
I T S E C U R I T Y K N O W - H O W

Matthias Deeg and Gerhard Klostermeier

Of Mice and Keyboards
On the Security of Modern Wireless Desktop Sets

June 2017

© SySS GmbH, June 2017

Schaffhausenstraße 77, 72072 Tübingen, Germany

+49 (0)7071 - 40 78 56-0

info@syss.de

www.syss.de

Deeg and Klostermeier | Of Mice and Keyboards 1

1 Introduction

Wireless desktop sets consisting of a wireless mouse, a wireless keyboard, and a USB dongle have become
more popular and more widespread in the last couple of years. Seen as a potential target, those radio-based
devices are of more interest to people with malicious intentions than their wired counterparts, due to the fact
that they can also be attacked remotely from a safe distance via radio signals.

As wireless desktop sets represent an attractive target both allowing to take control of a computer system and to
gain knowledge of sensitive data like passwords, they have been frequently analyzed for security vulnerabilities
and were successfully attacked in the past. One well-known example for exploiting vulnerabilities in wireless
keyboards is the open source wireless keyboard sniffer KeyKeriki by Dreamlab Technologies, the first version
of which was presented back in 2009 for Microsoft keyboards using the 27 MHz ISM band. The second version
of which also supported wireless keyboards using the 2.4 GHz ISM band and was presented in 2010 [1]. In
2015, Samy Kamkar published an Arduino-based wireless keyboard sniffer for Microsoft keyboards with known
security weaknesses that extended the work of the KeyKeriki v2.0 project [2] and of Travis Goodspeed’s research
concerning Nordic Semiconductor’s transceiver family nRF24 [3]. And in spring 2016, a collection of security
vulnerabilities found in USB dongles of wireless desktop sets of different manufacturers was released by
Bastille Networks Internet Security under the name of MouseJack which allowed keystroke injection attacks [4].

SySS GmbH started a research project about the security of modern wireless desktop sets using AES encryption
in 2015, as there was no publicly available data concerning security issues in current wireless mice and
keyboards. Until May 2016, several security vulnerabilities in modern wireless desktop sets of different
manufacturers like Microsoft, Cherry, Logitech, Fujitsu, and Perixx have been found and reported in the course
of our responsible disclosure program.

The found security vulnerabilities can be exploited within different attack scenarios from different attacker’s
perspectives. On the one hand, there are security issues which require one-time physical access to a keyboard
or a USB dongle, for example, to extract cryptographic keys which can be used in further attacks or to
manipulate the firmware. On the other hand, there are security issues that can be exploited remotely via radio
communication, for instance, replay or keystroke injection attacks due to insecure implementations of the
AES-encrypted data communication.

The results of our research show that the security levels of modern wireless desktop sets of different manufac-
turers are not equal and that some devices are more secure than others. Still, there was no wireless desktop
set without any security issues.

In this paper, we will present the results of this research and will demonstrate ways in which modern wireless
desktop sets of several manufacturers can be attacked by practically exploiting different security vulnerabilities.

2 Deeg and Klostermeier | Of Mice and Keyboards

2 Tested Devices and Used Technology

In the course of our research project, we analyzed five wireless desktop sets of different manufacturers that
consisted of a keyboard, a mouse, and an USB dongle. All three components contained a radio transceiver for
wireless communication. In Figure 1, the wireless desktop set Microsoft Wireless Desktop 2000 is exemplarily
shown.

The five tested wireless desktop sets were:

1. Microsoft Wireless Desktop 2000

2. Cherry AES B.UNLIMITED

3. Fujitsu Wireless Keyboard Set LX901

4. Logitech MK520

5. Perixx PERIDUO-710W

Four of the five tested devices used low power 2.4 GHz nRF24 transceivers by Nordic Semiconductor, one used
a low power 2.4 GHz transceiver by Cypress in combination with a low-voltage microcontroller (CY7C60123-
PVXC). The identified transceivers or respectively systems-on-a-chip (SoCs) of all tested wireless keyboards
and USB dongles are shown in Table 2. As most of the tested devices used nRF24 transceivers, we focused
our research on that.

Product Name Keyboard USB Dongle

Cherry AES B.UNLIMITED nRF24LE1 nRF24LU1+
Fujitsu Wireless Keyboard Set LX901 CYRF6936 CYRF6936
Logitech MK520 nRF24LE1 nRF24LU1+
Microsoft Wireless Desktop 2000 nRF24LE1H (OTP) nRF24LU1+
Perixx PERIDUO-710W nRF24LE1H (OTP) nRF24LU1+

Table 2: Identified transceivers and SoCs

For analyzing the radio communication and sending radio signals to the components of the wireless desktop
sets, we both used a software defined radio (e. g. HackRF One [5] and USRP B200 [6]) and an nRF24-based USB
radio dongle Crazyradio PA [7].

Deeg and Klostermeier | Of Mice and Keyboards 3

Figure 1: Overview of used hardware

We started to use the Crazyradio PA in combination with Bastille’s nRF research firmware [8] and to develop
Python tools for it after the MouseJack release in February 2016, because this tool set was superior to the one
we used by then. Many thanks to Marc Newlin.

Figure 2 illustrates the general functionality of wireless desktop set, where both the keyboard and the mouse
send radio signals (data packets with keystrokes or respectively mouse actions) to an USB dongle that is
connected to a computer system. The radio communication is bidirectional as shown in the picture, as the USB
dongle acknowledges received data packets.

Figure 2: Simplified communication of wireless desktop sets

4 Deeg and Klostermeier | Of Mice and Keyboards

3 Test Methodology

For our security analysis of the tested wireless desktop sets, we used the following three-step analysis:

1. Hardware analysis

2. Firmware analysis

3. Radio-based analysis

In the course of the hardware analysis, we opened the keyboards, mice, and USB dongles, had a closer look at
the printed circuit boards (PCBs), and identified interesting chips that are important for the functionality of the
devices, for example, radio transmitters, receivers, or transceivers. After that, we thoroughly read the fine
documentation of the identified chips and looked for test points, for instance, concerning Serial Peripheral
Interface (SPI).

As Figures 3 and 4 illustrate, the nRF24LE1 transceiver, for example, has a serial peripheral interface (SPI).

Figure 3: nRF24LE1F pin assignment for a QFN48 package [12]

Deeg and Klostermeier | Of Mice and Keyboards 5

Figure 4: Flash SPI slave physical interface for nRF24LE1 [12]

Regarding the nRF24-based devices, SPI can be used to read and write the internal flash memory, if the used
configuration of the chips allows this.

Figure 5 exemplarily shows the PCB back side of a Microsoft wireless keyboard where all four SPI soldering
points were kindly labeled (FMISO, FMOSI, FCSN, FSCK) which saved us some time for this test target
(disabled readback protection).

Figure 5: PCB back side of a Microsoft wireless keyboard

Having found the SPI concerning the tested keyboards and USB dongles, we soldered somewires to the identified
test points or directly to the SoC pins and tried to dump the firmware of the devices for further analysis. For this,
we used a Bus Pirate [9] in combination with the software tool nrfprog [10]. Figure 6 exemplarily illustrates SPI
read and write access to a Cherry wireless keyboard.

6 Deeg and Klostermeier | Of Mice and Keyboards

Figure 6: SPI read and write access to a Cherry wireless keyboard

Concerning some of the tested USB dongles, for instance, the one from Cherry, using SPI was a little bit more
difficult due to the lack of SPI test points on the PCB and the small size of the used nRF24LU1+ package as
Figure 7 illustrates. But with a helping hand of our colleague Alexander Straßheim, testing the SPI access for
reading and/or writing the flash memory of the USB dongles was also made possible.

Deeg and Klostermeier | Of Mice and Keyboards 7

Figure 7: SPI read and write access to a Cherry USB dongle (thanks to Alexander Straßheim)

By being able to read out the firmware of some of the tested devices, we could analyze the dumped firmware
images for security issues using reverse code engineering methods, e. g. static code analysis using the software
disassembler IDA Pro [11]. The nRF24 SoC possesses an 8051 compatible microcontroller which is described in
the Nordic Semiconductor nRF24LE Product Specification [12]. We also had a closer look at the code examples
of the Nordic Semiconductor’s nRF24 SDK [13] which were a very valuable resource in understanding how
nRF24-based devices are programmed and which libraries are already available to developers.

Figure 7 shows an excerpt of an annotated Cherry disassembly of the cryptographic function hal_aes_crypt
within the disassembler IDA Pro.

8 Deeg and Klostermeier | Of Mice and Keyboards

Figure 8: Excerpt of annotated Cherry firmware disassembly (function hal_aes_crypt)

In order to gain a better understanding of the nRF24 SoCs, we were not only reading available code provided
with the SDK, but also writing and analyzing own compiled sample code like the simple memcpy firmware
shown in Listing 3.1.

1 /* Really simple memory copy firmware */
2
3 #include <Nordic\reg24le1.h>
4 #include <hal_flash.h>
5
6 #define LENGTH 512
7
8 // data buffer
9 static uint8_t xdata buffer[LENGTH];
10
11 // Main routine
12 void main()
13 {
14 uint16_t src_addr = 0xFA00; // start of extended endurance data in NV memory
15 uint16_t dest_addr = 0xFC00; // start of normal endurance data in NV memory
16 uint16_t len = LENGTH;
17
18 // erase normal endurance memory pages (34 and 35)
19 hal_flash_page_erase(34);
20 hal_flash_page_erase(35);
21
22 // read extended endurance data memory from 0xFA00 to buffer
23 hal_flash_bytes_read(src_addr, buffer, len);
24
25 // write buffer to to SPI-addressable NVM (normal endurance memory)
26 hal_flash_bytes_write(dest_addr, buffer, len);
27
28 // wait forever
29 while(1) {}
30 }

Listing 3.1: Simple memcpy firmware for nRF24LE1

Deeg and Klostermeier | Of Mice and Keyboards 9

Eventually, we also performed a radio-based analysis of the 2.4 GHz wireless communication of individual
components of the tested wireless desktop sets. At first, we used software defined radios in combination with
GNU Radio [14] and a modified version of the software tool NRF24-BTLE-Decoder [15] for this purpose. Later,
we also made use of the nRF24-based USB dongle Crazyradio PA with Bastille’s nRF research firmware and our
developed Python scripts and tools in order to test specific test cases.

Figure 9 exemplarily shows a GNU Radio Companion (GRC) flow graph that we used in combination with the
modified version of NRF24-BTLE-Decoder in order to analyze the sent Enhanced ShockBurst data packets of the
tested nRF24-based keyboards and USB dongles.

Figure 9: Simple GNU Radio Companion flow graph for use with modified version of NRF24-BTLE-Decoder

The following output shows Enhanced ShockBurst data packets with AES-encrypted payloads of a wireless
Cherry keyboard.

1 $ cat /tmp/fifo | ./nrf24-decoder -d 1
2 nrf24-decoder, decode NRF24L01+ v0.1
3
4 (...)
5 Address: 0x6BB7E29E31 length:16, pid:0, no_ack:0, CRC:0x2D58 data:0294EF5368E70FB11AB685B818819388
6 Address: 0x6BB7E29E31 length:16, pid:0, no_ack:0, CRC:0x2D58 data:0294EF5368E70FB11AB685B818819388
7 Address: 0x6BB7E29E31 length:16, pid:0, no_ack:0, CRC:0x2D58 data:0294EF5368E70FB11AB685B818819388
8 (...)
9 Address: 0x6BB7E29E31 length:16, pid:0, no_ack:0, CRC:0x2D58 data:0294EF5368E70FB11AB685B818819388

10 Address: 0x6BB7E29E31 length:16, pid:0, no_ack:0, CRC:0x2D58 data:0294EF5368E70FB11AB685B818819388
11 Address: 0x6BB7E29E31 length:16, pid:0, no_ack:0, CRC:0x2D58 data:0294EF5368E70FB11AB685B818819388
12 (...)

But the easiest and most stable analysis of the nRF24 radio communication could be performed with the
Crazyradio PA.

10 Deeg and Klostermeier | Of Mice and Keyboards

4 Attack Surface and Attack Scenarios

Concerning the tested wireless desktop sets, we considered two attack scenarios where an attacker either has
unrestricted physical access to the components of the wireless desktop set or is only able to attack it via radio
signals.

In the first scenario, the attack surface consists primarily of the pinout of the used system-on-a-chip (SoC). In
the second scenario, the attack surface solely consists of radio communication.

In both attack scenarios, there are different possible attacks with specific security threats. The following
enumeration shows the ones we were interested in during our research project.

1. Physical access to wireless desktop set

– Extract firmware
– Manipulate firmware
– Extract cryptographic key material
– Manipulate cryptographic key material

2. Attacking via radio signals

– Exploiting unencrypted and unauthenticated radio communication
– Replay attacks
– Keystroke injection attacks
– Decrypting encrypted data communication

Deeg and Klostermeier | Of Mice and Keyboards 11

5 Security Vulnerabilities

In the course of our research project, we could find the following five security vulnerabilities in the tested
AES-encrypted wireless desktop sets:

1. Insufficient protection of code (firmware) and data (cryptographic key)

2. Unencrypted and unauthenticated data communication

3. Missing protection against replay attacks

4. Insufficient protection against replay attacks

5. Cryptographic issues

All found security vulnerabilities are described in more detail in the following sections and in our published
security advisories for the affected devices [16–29].

5.1 Insufficient Protection of Code and Data

During our research, we were able to access both the firmware and the AES cryptographic key (shared secret)
of three out of five tested wireless desktop sets, namely Cherry AES B.UNLIMITED, Microsoft Wireless Desktop
2000, and Perixx PERIDUA-710W.

Concerning those three nRF24-based devices, it was possible to access the flash memory via the Serial
Peripheral Interface (SPI) as illustrated in Figures 6 and Figure 7 using the software tool nrfprog.

The following is an extract of a memory dump of a Cherry dongle that contains the used AES key.

1 (...)
2 00007430: 0000 0000 0000 0000 0000 3cdd 9cc7 db74
3 00007440: 675a c0b2 9796 a55b 913c 0000 0000 0000
4 00007450: 0000 0000 0000 0000 0000 0000 0000 0000
5 (...)

The following output is an extract of a memory dump of the corresponding Cherry keyboard of the same wireless
desktop set that also contains the same AES key.

1 00000000: aa32 1d98 5ef9 3cdd 9cc7 db74 675a c0b2
2 00000010: 9796 a55b 913c ffff ffff ffff ffff ffff
3 00000020: ffff ffff ffff ffff ffff ffff ffff ffff
4 (...)

12 Deeg and Klostermeier | Of Mice and Keyboards

In contrast to the tested Microsoft and Perixx keyboard, the Cherry did not store the cryptographic key in the
so-called normal endurance memory but in extended endurance memory. Regarding the nRF24LE1, the 1.5 kB
non-volatile (NV) memory is divided into two 256-byte extended endurance pages and two 512 byte normal
endurance pages, as described in [12]. And the extended endurance non-volatile memory (EENVM) is not
accessible via SPI, as Figure 10 illustrates.

Figure 10: nRF24LE1 memory mapping for MCU and SPI access

Thus, in order to gain read and write access to the extended endurance memory that contained the cryptographic
key of the tested Cherry keyboard, we had to develop simple memcpy firmwares that just copied specific
memory regions from the extended endurance memory to normal data memory that was accessible via SPI. An
example of such a firmware is given in Listing 3.1.

Due to the insufficient protection of code (firmware) and data (cryptographic key), an attacker with physical
access to an affected wireless desktop set can extract the used AES key within a couple of minutes and use it
later on in radio-based attacks from a safe distance or manipulate the device firmware, for example, to weaken
the used cryptography.

Concerning the tested Cherry and Perixx keyboard, it arbitrary read and write access was possible. But this
was not true for the tested Microsoft keyboard, as it used a one-time programmable version of the nRF24LE1.
This only allows to change a 1 bit to a 0 bit in the flash memory, but not vice versa. Nevertheless, modifications
of code and data are still possible in a limited way.

A simple solution for a better protection of code and data of nRF24-based devices is to use the offered readback
protection feature (RDISMB – Read DISable Main Block) shown in Figure 11.

Figure 11: nRF24 readback protection

Of the four tested nRF24-based devices, only the Logitech keyboard used this feature in order to prevent simple
read and write access to the flash memory via SPI.

Deeg and Klostermeier | Of Mice and Keyboards 13

5.2 Mouse Spoofing Attacks

During our research project, we found out that the radio communication of all tested wireless mice was
unencrypted and unauthenticated. Thus, by knowing the used mouse data protocol, an attacker can spoof
mouse actions like mouse movements or mouse clicks. This is rather old news and has been reported and
demonstrated by different people in the last couple of years at different occasions – but nevertheless exciting.
Yet, modern wireless desktop sets with encryption still only encrypt and/or authenticate the keyboard but not
the mouse communication which poses a security risk.

By sending forged data packets, an attacker can remotely control the mouse pointer of a target system in
an unauthorized way. And by using trial and error and good educated guesses regarding the target system
(heuristic method), so-called mouse spoofing attacks can result in successful remote code execution on affected
target systems.

The heuristics concern the following issues:

– Operating system (screen layout & content)
– Language settings (screen layout & content)
– Mouse settings (mouse pointer acceleration)
– Settings of the OS’s virtual on-screen keyboard (window position)

In our experience, it is a good idea to stick to default settings of systems when it comes to heuristics, like
the default mouse settings for Windows 7 and the default window position and dimensions of the Window 7
on-screen keyboard (OSK) that are illustrated in Figure 12.

Figure 12: Default mouse settings for Windows 7

In the course of our research project, we developed a proof-of-concept software tool named Radioactive Mouse
to perform mouse spoofing attacks. This software tool is part of our nRF24 Playset [31].

Pixel-perfect control over the mouse pointer sounded easy but could not be managed so far. There is more work
needed concerning mouse acceleration (reverse engineering the actual algorithms), that is, for instance, used

14 Deeg and Klostermeier | Of Mice and Keyboards

in different Windows operating systems (implemented in win32k.sys), to achieve the desired deterministic
behavior.

Thus, our proof-of-concept software tool currently uses handcrafted and slowed down mouse actions for more
or less reliable attacks.

Radioactive Mouse in combination with the USB radio dongle Crazyradio PA and Bastille’s nrf-reserch-firmware
is able to successfully perform mouse spoofing attacks that result in code execution as Figures 13 and 14
illustrate.

Figure 13: Mouse spoofing attack using the software tool Radioactive Mouse

Figure 14: Successful remote code execution via mouse spoofing attack

Deeg and Klostermeier | Of Mice and Keyboards 15

This attack is also demonstrated in a short video named Radioactive Mouse States the Obvious that is available
on YouTube [30].

5.3 Replay Attacks

In the course of our research project, we found out that all keyboards and mice of the tested wireless desktop
sets were vulnerable to replay attacks due to missing or insufficient protection against this kind of attack.

The Microsoft Wireless Desktop 2000 has a replay protection, but according to our test results, the used
window for valid packet counter values is large enough to perform replay attacks under certain conditions
where there are only few keystrokes between the recording and replaying.

Concerning wireless desktop sets, replay attacks allow for the following two attacks:

1. Gaining unauthorized access to unattended screen-locked computer systems

2. Recovering clear-text keystrokes when having physical access to the USB dongle of the targeted wireless
desktop set, e. g. to gain knowledge of passwords

Simple replay attacks can be performed using a software defined radio without knowing the actual communi-
cation protocol (black box). Figure 15 shows a test setup for simple replay attacks using a software defined
radio.

Figure 15: Test setup for simple replay attacks via software defined radio

Figure 16 exemplarily shows the simple GNU Radio Companion flow graph that we used to perform replay
attacks against the tested Fujitsu wireless desktop set LX901.

16 Deeg and Klostermeier | Of Mice and Keyboards

Figure 16: Simple GNU Radio Companion flow graph for replay attacks using a software defined radio

More sophisticated replay attacks, where only specific data packets are of interest and shall be used, can be
easily performed using a simple software tool in combination with Crazyradio PA and Bastille’s nrf-research-
firmware.

During our research project, we have developed a Python software tool named Simple Replay Tool that we
used to demonstrate missing or insufficient replay protections in the five tested devices. The following output
illustrates a replay attack against a Microsoft Wireless 2000 keyboard.

1 # python simple_replay.py -c 25
2 _____ ______ ___ _ _ _____ _ _
3 | __ \| ____|__ \| || | | __ \| | | |
4 _ __ | |__) | |__) | || |_ | |__) | | __ _ _ _ ___ ___| |_
5 | '_ \| _ /| __| / /|__ _| | ___/| |/ _` | | | / __|/ _ \ __|
6 | | | | | \ \| | / /_ | | | | | | (_| | |_| __ \ __/ |_
7 |_| |_|_| __| |____| |_| |_| |_|__,_|__, |___/___|__|
8 __/ |
9 |___/
10 Simple Replay Tool v0.2 by Matthias Deeg - SySS GmbH (c) 2016
11 [*] Configure nRF24 radio
12 [*] Scanning for wireless keyboard ...
13 [+] Received data: 083816010100f32a
14 [+] Found nRF24 device with address A9:A9:8F:EB:CD on channel 25
15 [?] Attack this device (y/n)? y
16 [*] Start recording (<CTRL+C> to stop recording)
17 [+] Received data: 09981601dea2f3157ec032fcfa34ce70dee330c9
18 [+] Received data: 09981601dea2f3157ec032fcfa34ce70dee330c9…
19 ()
20 ^C
21 [*] Stop recording
22 [*] Press <ENTER> to replay the recorded data packets or <CTRL+C> to quit ...
23 [+] Send data: 09981601dea2f3157ec032fcfa34ce70dee330c9

Deeg and Klostermeier | Of Mice and Keyboards 17

24 [+] Send data: 09981601dea2f3157ec032fcfa34ce70dee330c9…
25 ()

By using this proof-of-concept software tool, we could successfully perform the two attacks mentioned at the
beginning of this section. So, we were both able to gain unauthorized access to a screen-locked computer
system and to recover clear-text keystrokes, for instance, password information, when having physical access
to the USB dongle and recorded radio data communication of the corresponding keyboard.

5.4 Keystroke Injection Attacks

The last but not least security vulnerabilities we found during our research were cryptographic issues in three
of the five tested wireless desktop sets that allow for keystroke injection attacks.

The tested Cherry, Perixx, and Logitech keyboards use AES with 128 bit keys in counter mode (AES-128-CTR). In
general, the initialization vector (IV) consists of a nonce and a counter. The nonce of the tested Cherry keyboard,
for example, consists of eleven NULL bytes (sequence of eleven bytes with the value 0x00) and the counter of
a random five byte value.

By manipulating the firmware of the Cherry keyboard via SPI access (see Section 5.1), we were able to analyze
and better understand the AES-encrypted radio communication that we had previously seen in our radio-based
analysis. For analyzing the firmware, we also had a look at the nRF24 SDK and the provided source code, which
was very valuable.

In the file lib_crypt.h, for instance, we found a very interesting comment about differences in the imple-
mentation of the cryptographic library between the nRF24LU1 and the nRF24LE1 device and about the used
counter (LS5B) in the nRF24LE1 that is shown in Listing 5.1.

)
1 /*
2 (...)
3 * @brief Example implementation for encrypting/decrypting data
4 *
5 * The encryption is based on AES counter mode (CTR) where a 128 bit hybrid counter
6 * is used for encryption/decryption. The counter is split in two, 11 bytes as MS11B
7 * and 5 bytes as LS5B. The LS5B part is not secret and tells the receiver how
8 * to decrypt an encrypted message.
9 (...)

10 * Note that the security of the link will not be reduced as a consequence of sending
11 * the counter value in plain text as long as the following criteria are met:
12 *
13 * - Cipher key used for encryption/decryption must be kept secret.
14 * - The plain text counter (LS5B) must be modified for each transfer.
15 (...)
16 * The library can be used on both nRF24LU1 and nRF24LE1 devices, but the implementation
17 * is slightly different between these. In the nRF24LE1 implementation the LS5B is not
18 * a counter, but random values generated by the embedded random number generator.
19 * The reason for this is that the counter value would have to be stored in data memory
20 * in between each packet, which is not possible when residing in "deep sleep" power save
21 * mode.
22 (...)
23 */

Listing 5.1: Source code excerpt from nRF24 SDK (lib_crypt.h)

18 Deeg and Klostermeier | Of Mice and Keyboards

Besides, we could also read in the SDK source code, how the random five byte counter value (LS5B) was
actually generated, as Listing 5.2 illustrates.

1 (...)
2 void lib_crypt_generate_ls5b(uint8_t * dest_buf)
3 {
4 uint8_t i;
5 hal_rng_power_up(true);
6
7 for(i=0;i<5;i++)
8 {
9 while(!hal_rng_data_ready())
10 {}
11 dest_buf[i] = hal_rng_read();
12 }
13
14 hal_rng_power_up(false);
15 }
16 (...)

Listing 5.2: Source code excerpt from nRF24 SDK (lib_crypt_le1.c)

We also found out that the plaintext of a key release packet only consists of NULL bytes, for example, eleven
NULL bytes in case of the tested Cherry keyboard.

When considering the operation mode of the used AES counter mode encryption, an attacker knows all the
values encircled in red, as depicted in Figure 17, concerning a key release packet.

Figure 17: Counter mode encryption

Regarding the Cherry AES B.Unlimited, the known values are as follows:

1. The nonce is hard-coded to 11 NULL bytes.

2. The counter is a random five byte value that can be reused (see replay attacks in Section 5.3) and is
sent in cleartext over the air via ShockBurst radio communication.

3. The ciphertext of a key release packet is sent over the air via ShockBurst radio communication.

4. The plaintext of a key release packet is 11 NULL bytes.

5. The keystream block of a key release packet with a specific IV (nonce + counter) is 11 NULL bytes
(content of the key release packet), as x ⊕ 0 = x (exclusive or).

Deeg and Klostermeier | Of Mice and Keyboards 19

Thus, a key release packet can be arbitrarily manipulated by an attacker and used for keystroke injection
attacks.

For this, an attacker has to know the actual data format for sending keystrokes. By having access to the
firmware and analyzing the actual code or by trial and error, it is possible to find out what the used data format
is and which bits and bytes have to modified for successful keystroke injections.

The tested Cherry keyboard AES B.Unlimited, for instance, uses the USB HID data format shown in Figure 18
for the actual keystroke data.

Figure 18: USB HID data format for sending keystrokes used by Cherry keyboard

Examples of valid modifiers and key codes for this USB HID data format are:

Modifier/Key Modifier/Key Code

MODIFIER_NONE 0
MODIFIER_SHIFT_LEFT 1 « 1
MODIFIER_ALT_LEFT 1 « 2
KEY_A 0x04
KEY_B 0x05
KEY_C 0x06

Table 4: Examples of modifier and key codes

An example for a keystroke injection with the capital letter A is illustrated in Figure 19.

Figure 19: Example of keystroke injection

In general, a keystroke injection attack can be performed in these five easy steps:

1. Find target device (wireless keyboard)

2. Find key release packet (heuristic method)

20 Deeg and Klostermeier | Of Mice and Keyboards

3. Do simple math (XOR)

4. Send modified key release packet for keystroke injection

5. Repeat steps 3 & 4 until attack is completed

In the course of our research project, we developed several proof-of-concept software tools that allow an easy
performance of keystroke injection attacks against affected devices.

The following output exemplarily shows our software tool Keystroke Injector used against a Perixx keyboard.

1 # python keystroke_injector.py -c 6 11 28 32 39 65 75 80 -d perixx
2 _____ ______ ___ _ _ _____ _ _
3 | __ \| ____|__ \| || | | __ \| | | |
4 _ __ | |__) | |__) | || |_ | |__) | | __ _ _ _ ___ ___| |_
5 | '_ \| _ /| __| / /|__ _| | ___/| |/ _` | | | / __|/ _ \ __|
6 | | | | | \ \| | / /_ | | | | | | (_| | |_| __ \ __/ |_
7 |_| |_|_| __| |____| |_| |_| |_|__,_|__, |___/___|__|
8 __/ |
9 |___/
10 Keystroke Injector v0.7 by Matthias Deeg - SySS GmbH (c) 2016
11 [*] Configure nRF24 radio
12 [*] Set keyboard: Perixx
13 [*] Scanning for wireless keyboard ...
14 [+] Found nRF24 device with address 15:25:D8:AB:23 on channel 65
15 [?] Attack this device (y/n)? y
16 [*] Search for crypto key (actually a key release packet) ...
17 [+] Found crypto key
18 [*] Please choose your attack vector (0 to quit)
19 1) Open calc.exe
20 2) Open cmd.exe
21 3) Classic download & execute attack
22 0) Exit
23 [?] Select keystroke injection attack: 3
24 [*] Start keystroke injection ...
25 [*] Done.

Figure 20 depicts our software tool Cherry Attack PoC that can be used to attack vulnerable Cherry keyboards.

Deeg and Klostermeier | Of Mice and Keyboards 21

Figure 20: SySS Cherry Attack PoC software tool

The source code excerpt shown in Listing 5.3 illustrates how simple the actual attack exploiting the described
cryptographic issues of the used AES counter mode is.

1 def keyCommand(self, modifiers, keycode1, keycode2 = KEY_NONE, keycode3 = KEY_NONE, keycode4 = '

KEY_NONE, keycode5 = KEY_NONE, keycode6 = KEY_NONE):
2 """Return AES encrypted keyboard data"""
3
4 # generate HID keyboard data
5 plaintext = pack("8B", modifiers, 0, keycode1, keycode2, keycode3,
6 keycode4, keycode5, keycode6)
7
8 # encrypt the data with the set crypto key
9 ciphertext = ""

10 i = 0
11 for b in plaintext:
12 ciphertext += chr(ord(b) ^ ord(self.cryptoKey[i]))
13 i += 1
14
15 return ciphertext + self.counter

Listing 5.3: Source code excerpt from SySS Cherry PoC tool (keyboard.py)

For demonstration purposes of the found replay and keystroke injection vulnerabilities, we also built a simple
device called SySS Radio Hack Box [32] whose first prototype is shown in Figure 21.

22 Deeg and Klostermeier | Of Mice and Keyboards

Figure 21: SySS Radio Hack Box prototype

It is a simple Raspberry Pi-based device with a very simple hand-soldered Raspberry Pi shield that is shown in
Figure 22 using a Crazyradio PA with a custom Python software.

Figure 22: Very simple Raspberry Pi shield

A demo video showing a replay and keystroke injection attack using the SySS Radio Hack Box is available on
YouTube [33].

Deeg and Klostermeier | Of Mice and Keyboards 23

6 Manufacturer Statements and Feedback

In the course of our responsible disclosure program, we reported all found security vulnerabilities of this
research project via security advisories to all manufacturers of affected devices.

At a later date, all security advisories were made publicly available according to our responsible disclosure
policy [34].

In the following sections, received manufacturer statements and feedback are quoted.

6.1 Perixx

There was no response from Perixx concerning our reported security issues in the tested wireless desktop set
Perixx PERIDUO-710W.

6.2 Microsoft

Concerning the insufficient protection of code and data found in the wireless desktop set Microsoft Wireless
Desktop 2000, we received the following feedback from Microsoft:

“ As you called out in your email, given each wireless desktop set has different
cryptographic key which makes this attack not generic at all. It also requires
physical access to the keyboard and sniffer to capture packets to decrypt with
obtained key. If you can open keyboard and dump flash from it you can as well
change the whole board. Hence, this doesn’t meet security servicing bugbar. We
have opened a bug in the next version of the product for the core team to evaluate.

”Regarding mouse spoofing attacks, we received the following statement from Microsoft:

“ This behavior is by design and that there will be no security update.

”

24 Deeg and Klostermeier | Of Mice and Keyboards

And concerning replay attacks, Microsoft sent us the following feedback:

“ We are verifying our fix for this issue, hopefully it will be the necessary solution.
In that it lies in the dongle firmware, we are still coming to an understanding on
whether this will be go-forward only for keyboard dongles or whether there are
options for making the fix available for already manufactured dongles.

”
6.3 Logitech

We received the following feedback from Logitech concerning reported security issues in the tested wireless
desktop set Logitech MK520:

“ Please thank them a lot of their notification and let them know that Logitech is
working to provide a better encryption for future products.

”
6.4 Fujitsu

Fujitsu sent us the following statement concerning the reported replay attack found in the wireless desktop set
Fujitsu Wireless Keyboard Set LX901:

“ Thank you very much for your information about our wireless keyboard. As we have
already pointed out, we believe that the described scenario is not easy to perform
under real conditions due to the radio protocol used. As mentioned, our product is
not destined to sell security, but convenience in the first place (without the security
drawbacks of unencrypted wireless keyboards). Any new information and insights
will be incorporated into the already planned successor product.

”

Deeg and Klostermeier | Of Mice and Keyboards 25

6.5 Cherry

Regarding the reported security vulnerabilities we had found in the tested wireless desktop set Cherry AES
B.Unlimited, we received the following statement from Cherry:

“ We have examined the ’security flaws’ you reported to us. As a result, we decided,
until further notice, to no longer refer to AES encryption in order to promote the
affected product. At the moment, we are currently working on a successor product.
As we already did in the past, we recommend to our customers having particularly
high security demands using wired products which, depending on the requirements,
should be CC certified.

”

26 Deeg and Klostermeier | Of Mice and Keyboards

7 Conclusion

In the course of our research project, we could find one or more security vulnerabilities in all five tested modern
wireless desktop sets with AES encryption.

Overall, the following five security issues were found that allow for specific attacks:

1. Insufficient protection of code (firmware) and data (cryptographic key)
⇒Access to sensitive data

2. Unencrypted and unauthenticated data communication
⇒Mouse spoofing attacks

3. Missing protection against replay attacks
⇒Replay attacks

4. Insufficient protection against replay attacks
⇒Replay attacks

5. Cryptographic issues
⇒Keystroke injection attacks

Table 6 summarizes the results of our research project.

Product Name Insufficient Code/ Mouse Replay Keystroke
Data Protection Spoofing Injection

Cherry AES B.UNLIMITED ❉ ❉ ❉ ❉

Fujitsu Wireless Keyboard Set LX901 ? ? ❉ ?
Logitech MK520 X ❉ ❉ ❉*
Microsoft Wireless Desktop 2000 ❉ ❉ ❉ ?
Perixx PERIDUO-710W ❉ ❉ ❉ ❉

Table 6: Summary of our research results

❉ security issue exists

X security issue does not exist

? security issue may exist (more work required)

* first found reported to Logitech by Bastille Networks

Deeg and Klostermeier | Of Mice and Keyboards 27

In our opinion and experience, all of those found security vulnerabilities can be exploited in real world attack
scenarios and are not only exploitable in a lab environment. As a matter of fact, we already have exploited
some of the security vulnerabilities during penetration tests within the last couple of months.

Some of the found security vulnerabilities cannot or will not be fixed in the tested product versions, but maybe
in future ones.

The results of our research show that the security levels of modern wireless desktop sets of different manufac-
turers are not equal and that some devices are more secure than others. Yet, there was no wireless desktop
set without any security issues.

SySS recommends that wireless desktop sets with known security vulnerabilities not be used in security-
related environments.

During our research project, the Bastille Threat Research Team independently also found security vulnerabilities
in several wireless desktop sets with AES encryption of different manufacturers. You can find the results of
their research project named KeyJack on their website [35].

In 2016, we presented the results of our research project at different IT security conferences. For instance,
slides and a video recording of our talk Of Mice and Keyboards: On the Security of Modern Wireless Desktop
Sets from the IT security conference Hack.lu 2016 can be found at [36, 37].

28 Deeg and Klostermeier | Of Mice and Keyboards

References

[1] Dreamlab Technologies, KeyKeriki v2.0 – 2.4 GHz, http://www.remote-exploit.org/articles
/keykeriki_v2_0__8211_2_4ghz/, 2010 (Cited on page 1.)

[2] Samy Kamkar, KeySweeper, http://samy.pl/keysweeper, 2015 (Cited on page 1.)

[3] Travis Goodspeed, Promiscuity is the nRF24L01+’s Duty, http://travisgoodspeed.blogspot.de/
2011/02/promiscuity-is-nrf24l01s-duty.html, 2011 (Cited on page 1.)

[4] Bastille Networks Internet Security, MouseJack, https://www.mousejack.com/, 2016 (Cited on
page 1.)

[5] Great Scott Gadgets, HackRF One, https://greatscottgadgets.com/hackrf/ (Cited on page 2.)

[6] Ettus Research, USRP B200, https://www.ettus.com/product/details/UB200-KIT (Cited on
page 2.)

[7] Bitcraze, Crazyradio PA, https://www.bitcraze.io/crazyradio-pa/ (Cited on page 2.)

[8] Bastille Networks Internet Security, nrf-research-firmware, https://github.com/BastilleResea
rch/nrf-research-firmware, 2016 (Cited on page 3.)

[9] Dangerous Prototypes, Bus Pirate, http://dangerousprototypes.com/docs/Bus_Pirate,
(Cited on page 5.)

[10] Dangerous Prototypes, nrfprog, https://github.com/JoseJX/nrfprog, (Cited on page 5.)

[11] Hex-Rays, Interactive Disassembler Pro, https://www.hex-rays.com/products/ida/index.
shtml (Cited on page 7.)

[12] Nordic Semiconductor, Nordic Semiconductor nRF24LE Product Specification v1.6, http:
//www.nordicsemi.com/eng/content/download/2443/29442/file/nRF24LE1_Pro
duct_Specification_rev1_6.pdf (Cited on pages 4, 5, 7, and 12.)

[13] Nordic Semiconductor, nRF24L01+ Evaluation Kit, https://www.nordicsemi.com/eng/nordic/
download_resource/9620/7/85171947/2434 (Cited on page 7.)

[14] GNU Radio https://en.wikipedia.org/wiki/GNU_Radio (Cited on page 9.)

[15] Omri Iluz, NRF24-BTLE-Decoder, https://github.com/omriiluz/NRF24-BTLE-Decoder, 2016
(Cited on page 9.)

[16] Gerhard Klostermeier and Matthias Deeg, SySS Security Advisory SYSS-2016-031, https://www.sy
ss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-031.txt, 2016
(Cited on page 11.)

[17] Gerhard Klostermeier and Matthias Deeg, SySS Security Advisory SYSS-2016-032, https://www.sy
ss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-032.txt, 2016
(Cited on page 11.)

[18] Gerhard Klostermeier and Matthias Deeg, SySS Security Advisory SYSS-2016-033, https://www.sy
ss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-033.txt, 2016
(Cited on page 11.)

http://www.remote-exploit.org/articles/keykeriki_v2_0__8211_2_4ghz/
http://www.remote-exploit.org/articles/keykeriki_v2_0__8211_2_4ghz/
http://samy.pl/keysweeper
http://travisgoodspeed.blogspot.de/2011/02/promiscuity-is-nrf24l01s-duty.html
http://travisgoodspeed.blogspot.de/2011/02/promiscuity-is-nrf24l01s-duty.html
https://www.mousejack.com/
https://greatscottgadgets.com/hackrf/
https://www.ettus.com/product/details/UB200-KIT
https://www.bitcraze.io/crazyradio-pa/
https://github.com/BastilleResearch/nrf-research-firmware
https://github.com/BastilleResearch/nrf-research-firmware
http://dangerousprototypes.com/docs/Bus_Pirate
https://github.com/JoseJX/nrfprog
https://www.hex-rays.com/products/ida/index.shtml
https://www.hex-rays.com/products/ida/index.shtml
http://www.nordicsemi.com/eng/content/download/2443/29442/file/nRF24LE1_Product_Specification_rev1_6.pdf
http://www.nordicsemi.com/eng/content/download/2443/29442/file/nRF24LE1_Product_Specification_rev1_6.pdf
http://www.nordicsemi.com/eng/content/download/2443/29442/file/nRF24LE1_Product_Specification_rev1_6.pdf
https://www.nordicsemi.com/eng/nordic/download_resource/9620/7/85171947/2434
https://www.nordicsemi.com/eng/nordic/download_resource/9620/7/85171947/2434
https://en.wikipedia.org/wiki/GNU_Radio
https://github.com/omriiluz/NRF24-BTLE-Decoder
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-031.txt
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-031.txt
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-032.txt
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-032.txt
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-033.txt
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-033.txt

Deeg and Klostermeier | Of Mice and Keyboards 29

[19] Matthias Deeg and Gerhard Klostermeier SySS Security Advisory SYSS-2016-038, https://www.sy
ss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-038.txt, 2016
(Cited on page 11.)

[20] Matthias Deeg and Gerhard Klostermeier SySS Security Advisory SYSS-2016-043, https://www.sy
ss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-043.txt, 2016
(Cited on page 11.)

[21] Gerhard Klostermeier and Matthias Deeg, SySS Security Advisory SYSS-2016-044, https://www.sy
ss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-044.txt, 2016
(Cited on page 11.)

[22] Gerhard Klostermeier and Matthias Deeg, SySS Security Advisory SYSS-2016-045, https://www.sy
ss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-045.txt, 2016
(Cited on page 11.)

[23] Matthias Deeg and Gerhard Klostermeier, SySS Security Advisory SYSS-2016-046, https://www.sy
ss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-046.txt, 2016
(Cited on page 11.)

[24] Matthias Deeg and Gerhard Klostermeier, SySS Security Advisory SYSS-2016-047, https://www.sy
ss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-047.txt, 2016
(Cited on page 11.)

[25] Matthias Deeg and Gerhard Klostermeier, SySS Security Advisory SYSS-2016-058, https://www.sy
ss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-058.txt, 2016
(Cited on page 11.)

[26] Matthias Deeg and Gerhard Klostermeier, SySS Security Advisory SYSS-2016-059, https://www.sy
ss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-059.txt, 2016
(Cited on page 11.)

[27] Gerhard Klostermeier and Matthias Deeg, SySS Security Advisory SYSS-2016-060, https://www.sy
ss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-060.txt, 2016
(Cited on page 11.)

[28] Gerhard Klostermeier and Matthias Deeg, SySS Security Advisory SYSS-2016-061, https://www.sy
ss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-061.txt, 2016
(Cited on page 11.)

[29] Matthias Deeg and Gerhard Klostermeier, SySS Security Advisory SYSS-2016-068, https://www.sy
ss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-068.txt, 2016
(Cited on page 11.)

[30] SySS GmbH, Radioactive Mouse States the Obvious – Proof-of-Concept Video, https://www.youtub
e.com/watch?v=PkR8EODee44, 2016 (Cited on page 15.)

[31] Matthias Deeg and Gerhard Klostermeier, nRF24 Playset, https://github.com/SySS-Research
/nrf24-playset, 2017 (Cited on page 13.)

[32] Matthias Deeg and Gerhard Klostermeier, SySS Radio Hack Box, https://github.com/SySS-Re
search/radio-hackbox, 2017 (Cited on page 21.)

https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-038.txt
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-038.txt
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-043.txt
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-043.txt
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-044.txt
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-044.txt
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-045.txt
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-045.txt
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-046.txt
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-046.txt
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-047.txt
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-047.txt
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-058.txt
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-058.txt
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-059.txt
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-059.txt
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-060.txt
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-060.txt
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-061.txt
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-061.txt
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-068.txt
https://www.syss.de/fileadmin/dokumente/Publikationen/Advisories/SYSS-2016-068.txt
https://www.youtube.com/watch?v=PkR8EODee44
https://www.youtube.com/watch?v=PkR8EODee44
https://github.com/SySS-Research/nrf24-playset
https://github.com/SySS-Research/nrf24-playset
https://github.com/SySS-Research/radio-hackbox
https://github.com/SySS-Research/radio-hackbox

30 Deeg and Klostermeier | Of Mice and Keyboards

[33] SySS GmbH, SySS Radio Hack Box a.k.a. SySS Cherry Picker Demo Video, https://www.youtube.
com/watch?v=KMlmd-LhMmo, 2016 (Cited on page 22.)

[34] SySS GmbH, SySS Responsible Disclosure Policy, https://www.syss.de/en/responsible-di
sclosure-policy/ (Cited on page 23.)

[35] Bastille Networks Internet Security, KeyJack, https://www.bastille.net/research/vulner
abilities/keyjack/keyjack-intro/, 2016 (Cited on page 27.)

[36] Matthias Deeg and Gerhard Klostermeier, Of Mice and Keybords (Slides), Hack.lu 2016, http://arch
ive.hack.lu/2016/Of_Mice_and_Keyboards-Hack.lu_2016.pdf, 2016 (Cited on page 27.)

[37] Matthias Deeg and Gerhard Klostermeier, Of Mice and Keybords (Talk), Hack.lu 2016, https://www.
youtube.com/watch?v=Ja_VgUMz43Q, 2016 (Cited on page 27.)

https://www.youtube.com/watch?v=KMlmd-LhMmo
https://www.youtube.com/watch?v=KMlmd-LhMmo
https://www.syss.de/en/responsible-disclosure-policy/
https://www.syss.de/en/responsible-disclosure-policy/
https://www.bastille.net/research/vulnerabilities/keyjack/keyjack-intro/
https://www.bastille.net/research/vulnerabilities/keyjack/keyjack-intro/
http://archive.hack.lu/2016/Of_Mice_and_Keyboards-Hack.lu_2016.pdf
http://archive.hack.lu/2016/Of_Mice_and_Keyboards-Hack.lu_2016.pdf
https://www.youtube.com/watch?v=Ja_VgUMz43Q
https://www.youtube.com/watch?v=Ja_VgUMz43Q

SySS GmbH 72072 Tübingen Germany +49 (0)7071 - 40 78 56-0 info@syss.de

T H E P E N T E S T E X P E R T S

WWW.SYSS.DE

	1 Introduction
	2 Tested Devices and Used Technology
	3 Test Methodology
	4 Attack Surface and Attack Scenarios
	5 Security Vulnerabilities
	5.1 Insufficient Protection of Code and Data
	5.2 Mouse Spoofing Attacks
	5.3 Replay Attacks
	5.4 Keystroke Injection Attacks

	6 Manufacturer Statements and Feedback
	6.1 Perixx
	6.2 Microsoft
	6.3 Logitech
	6.4 Fujitsu
	6.5 Cherry

	7 Conclusion

