
I T S E C U R I T Y K N O W - H O W

Matthias Deeg and Gerhard Klostermeier

RIKKI DON’T LOSE THAT BLUETOOTH DEVICE
Exploiting the Obvious: Bluetooth Trust Relationships

July 2018

© SySS GmbH, July 2018

Schaffhausenstraße 77, 72072 Tübingen, Germany

+49 (0)7071 - 40 78 56-0

info@syss.de

www.syss.de

Deeg and Klostermeier | RIKKI DON’T LOSE THAT BLUETOOTH DEVICE 1

1 Introduction

Trust is a tricky thing. If you trust the wrong people or the wrong things, you might get into trouble. That is the reason
why it is generally a good idea to reconsider one’s trust relationships from time to time, because the assumptions these
trust relationships are based on may not be true anymore, or maybe never were.

In this article, we want to present an example of exploiting a trust relationship between two technical devices that can
put the confidentiality of sensitive data or the integrity of a computer system at risk. This trust relationship we are going
to exploit exists between two Bluetooth devices: On the one side a computer system you want to remain secure and you
don’t want to be compromised, for example your laptop, or your smartphone, and on the other side a Bluetooth device
you usually do not consider worth protecting with special diligence as it simply is an output device of a specific kind and
does not persistently store any of your valuable data locally, for example headphones.

2 Bluetooth Security Basics

The wireless technology standard known as Bluetooth for exchanging data over short distances is actually more than one
standard that uses a multitude of protocols and exists currently in different versions from Bluetooth 1.0 to Bluetooth 5.0.

Bluetooth is managed by the Bluetooth Special Interest Group (SIG) and specified in Bluetooth SIG documents like the
Bluetooth Core Specification Version 5.0 [1].

In order to understand the attack vector presented in this paper, some basic knowledge about the Bluetooth security
architecture and the Bluetooth security model is required. Hence, we will give a very brief introduction in this section
that summarizes information from the aforementioned Bluetooth Core Specification Version 5.0 and the excellent Guide
to Bluetooth Security [2] by the National Institute of Standards and Technology (NIST).

The Bluetooth security model includes the following five security features:

1. Pairing: The process for creating one or more shared secret keys

2. Bonding: The act of storing the keys created during pairing for use in subsequent connections in order to form a
trusted device pair

3. Device authentication: Verification that the two devices have the same keys

4. Encryption: Message confidentiality

5. Message integrity: Protects against message forgeries

During the evolution of the Bluetooth technology, also its security architecture evolved, and different cryptographic
algorithms were used for different purposes like authentication or encryption.

In general, there is a distinction between Bluetooth BR/EDR (Basic Rate/Enhanced Data Rate) and Bluetooth LE (Low
Energy, BLE, a.k.a. Bluetooth Smart) devices. The key differences of these two Bluetooth device types are shown in
Table 21.
1 from Section 2.1, Guide to Bluetooth Security [2]

Deeg and Klostermeier | RIKKI DON’T LOSE THAT BLUETOOTH DEVICE 2

Characteristic
Bluetooth BR/EDR Bluetooth Low Energy

Prior to 4.1 4.1 onwards Prior to 4.2 4.2 onwards

RF physical channels 79 channels with 1 MHz spacing 40 channels with 2 MHz spacing

Discovery/connect Inquiry/paging Advertising

Number of piconet slaves 7 (active)/255 total Unlimited

Device address privacy None Private device addressing available

Max data rate 1-3 MBps 1 MBps via GFSK modulation

Pairing Algorithm

Prior to 2.1: P-256 Elliptic Curve, AES-128 P-256 Elliptic Curve,
E21/E22/SAFER+ HMAC-SHA-256 AES-CMAC
2.1 to 4.0:

Elliptic Curve P-1922,
HMAC-SHA-256

Device authentication algorithm E1/SAFER HMAC-SHA-256 AES-CCM

Encryption algorithm E0/SAFER+ AES-CCM AES-CCM

Typical range 30 m 50 m

Max output power 100 mW (20 dB) 10 mW (10 dB)/100 mW (20 dB)

Table 2: Key differences between Bluetooth BR/EDR and Low Energy (source: Guide to Bluetooth
Security [2])

In order to communicate with each other, two Bluetooth devices have to share a secret. This shared secret, a cryptographic
key, is created during the pairing process. How the actual shared key is generated depends on the IO capabilities, of the
Bluetooth devices shown in Table 4.

Capability Type Description

NoInput Input Device does not have the ability to indicate “yes” or “no”

Yes/no Input Device has at least two buttons that can be easily mapped to “yes” and “no” or
the device has a mechanism whereby the user can indicate either “yes” or “no”

Keyboard Input Device has a numeric keyboard that can input the numbers 0 through 9 and a confirmation
Device also has at least two buttons that can be easily mapped to “yes” and “no” or
the device has a mechanism whereby the user can indicate either “yes” or “no”

NoOutput Output Device does not have the ability to display or communicate a 6 digit decimal number

Numeric output Output Device has the ability to display or communicate a 6 digit decimal number

Table 4: Bluetooth device IO capabilities (source: Bluetooth Core Specification [1])

Table 6 illustrates the mapping of IO Capabilities to the used key generation method.

Deeg and Klostermeier | RIKKI DON’T LOSE THAT BLUETOOTH DEVICE 3

Initiator
Responder DisplayOnly Display YesNo Keyboard Only NoInput NoOutput Keyboard Display

Display Just works Just works Passkey entry Just works Passkey entry
Only Unauthenticated Unauthenticated Authenticated Unauthenticated Authenticated

Display Just works For LE Passkey entry Just works For LE
YesNo Unauthenticated Legacy pairing: Authenticated Unauthenticated Legacy pairing:

Just works Passkey entry
Unauthenticated Authenticated

For LE For LE
Secure connections: Secure connections:
Numeric comparison Numeric comparison

Authenticated Authenticated

Keyboard Passkey entry Passkey entry Passkey entry Just works Passkey Entry
Only Authenticated Authenticated Authenticated Unauthenticated Authenticated

NoInput Just works Just works Just works Just works Just works
NoOutput Unauthenticated Unauthenticated Unauthenticated Unauthenticated Unauthenticated

Keyboard Passkey entry For LE Passkey entry Just works For LE
Display Authenticated Legacy pairing: Authenticated Unauthenticated Legacy pairing:

Passkey entry Passkey entry
Authenticated Authenticated

For LE For LE
Secure connections: Secure connections:
Numeric comparison Numeric comparison

Authenticated Authenticated

Table 6: Mapping of IO capabilities to key generation method (source: Bluetooth Core Specifica-
tion [1])

For understanding the attack vector described in the following section, the details of the different key generation methods,
the different security key hierarchies, and used key derivation functions do not matter. It is only important to know that
each paired, or more precisely bonded, Bluetooth device locally stores one or more shared secret keys created during the
pairing process for use in subsequent connections in order to form a trusted device pair.

When talking about Bluetooth BR/EDR devices, this persistently stored shared cryptographic key material is called Link
Key (LK), when talking about Bluetooth LE devices, it is called Long Term Key (LTK).

Besides this cryptographic key material, bonded Bluetooth devices also store at least the Bluetooth device address
(BD_ADDR) of the devices they share secret keys with.

Deeg and Klostermeier | RIKKI DON’T LOSE THAT BLUETOOTH DEVICE 4

3 Exploiting the Obvious

During a research project concerning Bluetooth keyboards [3], we made the following two observations that combined
result in an interesting attack vector regarding Bluetooth trust relationships, at least in our opinion:

1. Cryptographic key material of bonded Bluetooth devices can be extracted by an attacker with physical access
without much difficulties.

2. Most of the Bluetooth stacks of modern operating systems do not strictly bind specific properties of a bonded
Bluetooth device with its pairing information.

We developed a software tool named Bluetooth Keyboard Emulator [4] based on existing, publicly available software
projects in order to emulate Bluetooth Classic (BR/EDR) keyboards for different test cases.

The Bluetooth Keyboard Emulator used the Bluetooth HID (Human Interface Device) Profile and worked flawlessly using
extracted link keys of tested Bluetooth Classic keyboards without any complaints by the paired client systems with
different operating systems (Arch Linux, Microsoft Windows 10, Apple Mac OS X, iOS 11, and Android 8). So we wondered,
what happens if we do not replace a real Bluetooth keyboard by an emulated one, but another type of Bluetooth device
by an emulated keyboard.

So we made some tests with Bluetooth headphones and replaced an output device (headphones) with an input device
(emulated keyboard) using at least the same Bluetooth device address and the same cryptographic key material (link key).

During the tests with Bluetooth keyboards, we noticed that most Bluetooth stacks of the operating systems we used
do not care if bonded Bluetooth devices change their attributes. For example, a device can change its name, vendor ID,
product ID, or serial number, and the paired host will not complain, as long as the Bluetooth device address and the
link key stay the same. But the more interesting observation is that some Bluetooth stacks also do not care if a device
changes its device class and its capabilities. And being able to change the behavior of a device, for instance from an
output device like headphones to an input device like a keyboard, that has a trust relationship with another device, for
example a smartphone or a laptop, is very interesting for an attacker.

The following steps outline the possible attack scenario:

1. The victim buys Bluetooth headphones and pairs them to its computer or smartphone.

2. The attacker gets hold of the headphones (e.g. the victim loses, disposes, or sells them, or they get stolen by the
attacker, or the attacker simply has physical access to them for a couple of minutes).

3. The attacker extracts the pairing information from the headphones (Bluetooth device address and link key).

4. The attacker uses the extracted pairing information to establish a valid connection to the victim’s computer or
smartphone with an emulated device.

5. Depending on the Bluetooth stack of the victim’s computer or smartphone, the emulated Bluetooth device can
behave as something completely different – for example as Bluetooth keyboard instead of headphones – which
enables an attacker to perform malicious actions on the victim’s device, for example in order to gain access to
sensitive data

Deeg and Klostermeier | RIKKI DON’T LOSE THAT BLUETOOTH DEVICE 5

SySS GmbH tested the described attack vector using Pioneer SE-MJ553BT-K Bluetooth Classic headphones which were
previously paired to different client systems (laptops or smartphones) with different operating systems.

In three of the five test cases, the attack using an emulated Bluetooth keyboard was successful. The corresponding client
systems accepted and established a connection with the emulated Bluetooth keyboard which was using the extracted
cryptographic key (link key) of the Bluetooth headphones. Although the originally paired device were headphones,
the tested Android, iOS, and Mac OS X client systems were not concerned with the fact that the trust relationship to
headphones now suddenly was a trust relationship to a keyboard, and the emulated Bluetooth keyboard worked flawlessly
with those client systems.

This attack vector did not work against our Windows 10 and Arch Linux test systems. However, the cause for the failed
attack concerning these two operating systems is still unclear and a topic for further research. It might be the case that
the Bluetooth stacks of the Windows 10 and the Arch Linux operating system do not allow such fundamental changes
in the behavior of a bonded Bluetooth device, or it might just be due to technical issues and missing features in our
developed Bluetooth keyboard emulator.

Table 8 summarizes the test results regarding this attack against different tested client systems.

Client operating system OS version Successful attack

Android 7.1.2 D

Android 8.1.0 D

Arch Linux 4.16.13-2-ARCH #1 X
Apple iOS 11.2.6 D

Apple iOS 11.3 D

Apple iOS 11.4 D

Apple Mac OS X 10.13.4 D

Apple Mac OS X 10.13.5 D

Microsoft Windows 10 1709 (OS Build 16299.125) X

Table 8: Attacks against different client systems

A quite similar attack named DirtyTooth [5] exploiting Bluetooth trust relationships and changing Bluetooth device
behavior via Bluetooth profiles against Apple iOS devices prior version 11.2 was published last year by ElevenPaths. In
the DirtyTooth attack scenario, the victim pairs his iOS device with a malicious Bluetooth device, for instance a Bluetooth
speaker. The trick here is that the malicious Bluetooth speaker does not only provide speaker functionalities via the
initially announced Bluetooth profile A2DP (Advanced Audio Distribution), but that it can change its functionality after the
completed device pairing by switching to another Bluetooth profile like PBAP (Phone Book Access Profile).

ElevenPaths found out that iOS devices prior version 11.2 accepted such a profile change without any user notification
and enabled the synchronization of contacts by default giving the malicious Bluetooth device access to all phone book
entries.

Our test results using our developed Bluetooth keyboard emulator show, that current iOS versions still accept profile
changes of bonded Bluetooth devices which may be exploited by an attacker. And not only iOS devices show this behavior,
but also Android, and Mac OS X devices.

In the remainder of this section, we want to illustrate an actual attack exploiting the trust relationship between Pioneer
SE-MJ553BT-K Bluetooth headphones shown in Figure 1 and an Android tablet running Android version 7.1.2.

Figure 2 shows the Android Bluetooth menu of the Android tablet with the paired headphones.

Deeg and Klostermeier | RIKKI DON’T LOSE THAT BLUETOOTH DEVICE 6

Figure 1: Pioneer Bluetooth headphones SE-MJ553BT-K

Deeg and Klostermeier | RIKKI DON’T LOSE THAT BLUETOOTH DEVICE 7

Figure 2: Android Bluetooth settings with paired Pioneer SE-MJ553BT-K headphones

Figure 3 shows the detailled Bluetooth settings regarding the paired Pioneer SE-MJ553BT-K headphones. It is interesting
to note that by default the headphones are not only used for audio functionality by the Android operating system but
also for contact sharing. This is because the headphones with its integrated microphone support the two audio-related
Bluetooth profiles A2DP3 and AVRCP4 as well as the two Bluetooth profiles HFP5 and HSP6 which can make good use of
phonebook access. This fact allows for more attacks without further ado by the attacker than the one described previously
in the attack vector, as we will see below.

Figure 3: Detailled Bluetooth settings for Pioneer SE-MJ553BT-K headphones

In order to perform an attack with an emulated Bluetooth device like a Bluetooth keyboard, an attacker has to extract
the required pairing information, i.e. Bluetooth device address and cryptographic key (link key), from the headphones.

3 Advanced Audio Distribution Profile
4 Audio/Video Remote Control Profile
5 Hands-Free Profile
6 Headset Profile

Deeg and Klostermeier | RIKKI DON’T LOSE THAT BLUETOOTH DEVICE 8

Concerning the Pioneer SE-MJ553BT-K headphones, this task is quite easy as all required information is stored on a SPI
serial flash chip soldered on the PCB.

Figure 4 shows a top view of the whole PCB which is located in the left ear cup and accessible by unscrewing three screws.
Pioneer SE-MJ553BT-K headphones use the Qualcomm CSR8635 single-chip Bluetooth Audio Platform7 in combination
with a SPI serial flash chip (type 25LV512).

Figure 4: Pioneer headphones PCB

In order to read the content of the SPI serial flash chip, an attacker with physical access has the following two options:

1. Chip-off: desoldering the chip from the PCB and reading its content with a suitable programming/reading device

2. In-circuit reading: reading the chip content using a suitable adapter in combination with a suitable program-
ming/reading device

Of course, the chip-off method is the more invasive and more time-consuming choice for an attacker to gain access to the
Bluetooth pairing information compared to the in-circuit reading. But if there is no limit for the time window regarding
physical access to the target device, this method works fine.

In our tests, we could successfully extract the required Bluetooth device address of the paired device and the cryptographic
key from the Pioneer SE-MJ553BT-K headphones using both methods.

Figure 5 exemplarily shows the desoldered SPI serial flash chip with TSSOP8-8 form factor soldered to a breakout board.

Figure 6 shows the breakout boardwith the SPI serial flash chipmounted in the usedMiniPro TL866A universal programmer9

demonstrating the chip-off method.

Figure 7 shows a suitable TSSOP-8 adapter that we used in combination with the MiniPro TL886A universal programmer
in order to successfully read the content of the SPI serial flash without desoldering it, demonstrating the in-circuit reading
method.

7 https://www.qualcomm.com/products/csr8635
8 Thin Shrink Small Outline Package
9 http://autoelectric.cn/EN/TL866_main.html

https://www.qualcomm.com/products/csr8635
http://autoelectric.cn/EN/TL866_main.html

Deeg and Klostermeier | RIKKI DON’T LOSE THAT BLUETOOTH DEVICE 9

Figure 5: TSSOP-8 SPI serial flash chip on a breakout board

Figure 6: MiniPro TL866A universal programmer

Deeg and Klostermeier | RIKKI DON’T LOSE THAT BLUETOOTH DEVICE 10

Figure 7: TSSOP-8 adapter used for in-circuit reading of the SPI serial flash

Using the MinPro TL866A universal programmer and the software tool MiniPro v6.71, we were able to read the contents
of the headphones’ SPI serial flash, as Figure 8 shows.

Highlighted in green, you can see the Bluetooth device address of the paired device – in this case of the Android tablet
with the Bluetooth address AC:22:0B:D6:F5:E4. Highlighted in red, you can see the 128 bit shared secret, the link
key. The actual data format of Bluetooth device addresses and link keys and how they are stored in EEPROM or serial
flash chips is device- and firmware-dependent. So for instance, the byte order (endianness) of link keys may vary from
device to device, as well as the actual data format used for storing Bluetooth device addresses.

By having extracted the link key and the Bluetooth device addresses of the paired device and the headphones themselves,
an attacker is now able to use this information to emulate a device and exploit the existing Bluetooth trust relationship
between the headphones and the Android tablet.

On a modern Linux operating system with the BlueZ10 5 Bluetooth stack and utilities, for example Arch Linux11, the
attacker has to create a file named info containing the link key and storing it within the appropriate directory structure
of the Linux operating system.

In this example, the BlueZ info file /var/lib/bluetooth/F4:0E:11:76:71:AD/AC:22:0B:E4:D6:F5/info
has to be created with the following content.
✞ ☎

1 [LinkKey]
2 Key=03E88F84C3008E7CAB3F78FB7E61FED9

✝ ✆

AC:22:0B:E4:D6:F5 is the Bluetooth device address of the Android tablet and F4:0E:11:76:71:AD is the
Bluetooth device address of the headphones that is required for Bluetooth address spoofing.

Now, the attacker can perform different attacks against the Nexus tablet by exploiting the existing Bluetooth trust
relationship, for example using our developed Bluetooth keyboard emulator shown in Figure 9.

10 http://www.bluez.org/
11 https://www.archlinux.org/

http://www.bluez.org/
https://www.archlinux.org/

Deeg and Klostermeier | RIKKI DON’T LOSE THAT BLUETOOTH DEVICE 11

Figure 8: Memory dump of the bonded headphones‘ SPI serial flash containing the target Bluetooth
device address and the link key

Figure 9: Developed Bluetooth keyboard emulator in use

Deeg and Klostermeier | RIKKI DON’T LOSE THAT BLUETOOTH DEVICE 12

By emulating a Bluetooth keyboard using the Bluetooth HID12 profile, an attacker within the Bluetooth radio range (see
Table 2) can remotely control the Android tablet in our example and use many of the device features that users who
acutally hold the device in their hands can use has at this point in time.

The example of exploiting the Bluetooth trust relationship with a keyboard is of course most interesting for an attacker if
he or she can attack the device at very moment when its screen is unlocked. Because attacks to screen-locked devices,
no matter if it is a smartphone, a tablet, a laptop, or a desktop computer, offer much less possibilities, at least using an
emulated keyboard. But if an attacker can attack a device that is in an unlocked state, it is possible to send arbitrary
keypresses, and for example change device settings, exfiltrate data using available e-mail, messenger, or web browser
apps, or trigger unwanted actions with the identity of the device owner.

If the Bluetooth trust relationship of the attacked Bluetooth device already allows for using more functionality of the
paired target device, like in our example with the Pioneer headphones and the Android tablet with default contact sharing,
an attacker can also simply read the whole device phone book via the offered Bluetooth PBAP13 service. This phone
book access is exemplarily illustrated with the used Android tablet in the following output using the freely available
open-source software tool pbapclient [6].
✞ ☎

1 $ python2 pbapclient.py
2 Welcome to the PhoneBook Access Profile!
3 pbap> connect AC:22:0B:E4:D6:F5
4 2018-06-25 16:11:24,004 __main__ INFO Finding PBAP service ...
5 2018-06-25 16:11:27,777 __main__ INFO PBAP service found!
6 2018-06-25 16:11:27,778 __main__ INFO Connecting to pbap server = (AC:22:0B:E4:D6:'

F5, 4)
7 2018-06-25 16:11:27,994 __main__ INFO Connect success
8 pbap> pull_vcard_listing telecom/pb
9 2018-06-25 16:11:35,417 __main__ INFO Requesting pull_vcard_listing with parameter'

s {'name': 'telecom/pb', 'self': <__main__.PBAPClient instance at 0x7f2d3225aa28>,'
'list_startoffset': 0, 'search_value': None, 'search_attribute': 0, 'order': 0, ''

max_list_count': 65535}
10 2018-06-25 16:11:35,896 __main__ INFO Result of pull_vcard_listing:
11 <?xml version="1.0"?><!DOCTYPE vcard-listing SYSTEM "vcard-listing.dtd"><vCard-listing'

version="1.0"><card handle="0.vcf" name="My name"/><card handle="1.vcf" name="'
Donald Duck"/><card handle="2.vcf" name="Mickey Mouse"/><card handle="3.vcf" nam'
e="Scrooge McDuck"/><card handle="4.vcf" name="Daisy Duck"/><card handle="5.vcf" '

name="Gyro Gearloose"/><card handle="6.vcf" name="Minnie Mouse"/><card handle="7.'
vcf" name="Goofy"/><card handle="8.vcf" name="Clarabelle Cow"/><card handle="9.vcf'
" name="Horace Horsecollar"/><card handle="10.vcf" name="Magica De Spell"/><card '

handle="11.vcf" name="Gus Goose"/><card handle="12.vcf" name="John D. Rockerduck'
"/></vCard-listing>

12 pbap>
✝ ✆

12 Human Interface Device
13 Phone Book Access Profile

Deeg and Klostermeier | RIKKI DON’T LOSE THAT BLUETOOTH DEVICE 13

4 Conclusion

The demonstrated attack scenario shows that Bluetooth devices you usually do not consider worth protecting with special
diligence may be targeted by attackers in order to perform further attacks against more interesting Bluetooth devices you
do not want to be compromised. Thus, you should always consider trust relationships between Bluetooth devices and
check from time to time if the assumptions these trust relationships were initially based on are still true.

You should also be aware of the fact that usually Bluetooth devices contain one or more persistently stored shared
secrets, called link keys or long term keys, which may be extracted by an attacker with short-time physical access, for
instance a couple of minutes, without much difficulties due to insufficient protection of this sensitive data. Having access
to this cryptographic key material allows for different attacks, for example exploiting the trust relationship of bonded
Bluetooth devices by changing device capabilities as demonstrated with the headphones becoming a keyboard.

Our tests using a Bluetooth keyboard emulator for replacing previously paired Bluetooth headphones also showed that
Bluetooth stacks of different operating systems behaved differently and that not all targeted client operating systems
were prone to this kind of attack.

During our research concerning the security of modern Bluetooth keyboards [3] where we found the described security
issue, not all our initial questions could be conclusively answered and some new interesting questions have been raised
that we are planning to address in future research projects.

With this paper, we hope to raise the awareness for Bluetooth security issues regarding Bluetooth trust relationships,
especially with peripheral devices that usually get less attention when it comes to IT security and whose life-cycles are
generally neglected.

If you want to learn more about Bluetooth security vulnerabilities, threats, risks, mitigations, and countermeasures, we
highly recommend the Guide to Bluetooth Security [2] by the National Institute of Standards and Technology (NIST).

Deeg and Klostermeier | RIKKI DON’T LOSE THAT BLUETOOTH DEVICE 14

References

[1] Bluetooth SIG, Bluetooth Core Specification Version 5.0, https://www.bluetooth.org/DocMan/handler
s/DownloadDoc.ashx?doc_id=421043, 2016 1, 2, 3

[2] John Padgette et al., National Institute of Standards and Technology (NIST), NIST Special Publication 800-121 Revision
2, Guide to Bluetooth Security, https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST
.SP.800-121r2.pdf, 2017 1, 2, 13

[3] Matthias Deeg and Gerhard Klostermeier, SySS GmbH, Security of Modern Bluetooth Keyboards,
https://www.syss.de/fileadmin/dokumente/Publikationen/2018/Security_of_Moder
n_Bluetooth_Keyboards.pdf, 2018 4, 13

[4] Matthias Deeg and Gerhard Klostermeier, SySS GmbH, Bluetooth Keyboard Emulator, https://github.com/S
ySS-Research/bluetooth-keyboard-emulator, 2018 4

[5] Chema Alonso et al.,ElevenPaths, DirtyTooth, http://dirtytooth.com/, 2017 5

[6] Kannan Subramani, BMW Car IT GmbH, Python implementation of Phone Book Access Profile (PBAP), https:
//github.com/bmwcarit/pypbap, 2018 12

https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=421043
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-121r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-121r2.pdf
https://www.syss.de/fileadmin/dokumente/Publikationen/2018/Security_of_Modern_Bluetooth_Keyboards.pdf
https://www.syss.de/fileadmin/dokumente/Publikationen/2018/Security_of_Modern_Bluetooth_Keyboards.pdf
https://github.com/SySS-Research/bluetooth-keyboard-emulator
https://github.com/SySS-Research/bluetooth-keyboard-emulator
http://dirtytooth.com/
https://github.com/bmwcarit/pypbap
https://github.com/bmwcarit/pypbap

SySS GmbH 72072 Tübingen Germany +49 (0)7071 - 40 78 56-0 info@syss.de

T H E P E N T E S T E X P E R T S

WWW.SYSS.DE

	1 Introduction
	2 Bluetooth Security Basics
	3 Exploiting the Obvious
	4 Conclusion

