
Received May 3, 2021, accepted May 13, 2021, date of publication May 19, 2021, date of current version May 18, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3082037

Client Puzzle Protocols as
Countermeasure against Automated
Threats to Web Applications
VLADIMIR BOSTANOV1
1SySS GmbH, Schaffhausenstr. 77, D-72072 Tübingen, Germany (e-mail: vladimir.bostanov@syss.de, vladimir.bostanov@bug.8yz.de)

Corresponding author: Vladimir Bostanov (e-mail: vladimir.bostanov@syss.de, vladimir.bostanov@bug.8yz.de).

This study was supported by the Research & Development Fund of SySS GmbH.

ABSTRACT Proof-of-work (PoW) schemes implemented in client puzzle protocols (CPPs) have been
proposed as a protection from Denial-of-Service (DoS) attacks against internet facing servers. A CPP
designed to thwart attacks against a certain client-server protocol is layered independently on top of this
protocol or is integrated into it. Such a general solution requires a great deal of standardization. On the other
hand, different web applications that may also become targets of DoS attacks can be protected by different
schemes, which greatly reduces standardization requirements and makes implementations substantially
easier. In the the present study, we discuss the utility of CPPs as a practical layer of protection of web
applications against DoS and other automated threat events. We define several requirements that must
be met by such CPPs, and we propose a general concept and a particular PoW algorithm that fulfills
these requirements. The general concept includes recursive definition of sub-puzzles and partial server-side
solution verification. The proposed PoW algorithm is based on this concept and on hash inversion/collision
tasks. We also introduce a few prototype implementations of this algorithm in JavaScript, WebAssembly,
Python, and C, and we present the results of some benchmark tests comparing the performances of these
implementations on different hardware. These results show that CPPs can provide an effective layer of
mitigation against certain automated threats to web applications.

INDEX TERMS proof of work, client puzzle protocol, automated threat, web application, denial of service

I. INTRODUCTION

PROOF OF WORK (PoW) as a concept has become
widely known as a mechanism for achieving consensus

in cryptocurrency systems. For instance, a block of trans-
actions added by a miner node to the Bitcoin blockchain
needs to include a hash of the block content [1], [2]. In
order to be accepted by all other nodes, the hash must fulfill
a certain condition (“meet a target”), which can only be
achieved by trial and error, i.e. by investing a certain amount
of computational resources and power.

Finding a hash that meets a preset target is an example
of a puzzle [3]. Long before rising to prominence with the
Bitcoin boom, PoW schemes implemented in client puzzle
protocols (CPPs) have been proposed as a deterrent to SPAM
[4], [5] and as a protection from Denial-of-Service (DoS)
attacks against internet facing servers [6], [7]. In the latter
case, the client must solve a puzzle in order to be granted
access to a service or data provided by the server. An attacker
is thus forced to invest a certain amount of computational

resources and time for each request, which limits the request
rate and prevents the depletion of server resources.

Various PoW schemes have been proposed. Some of the
most popular underlying puzzles are based on prime modulo
operations [4], [8]–[10], partial hash inversions [5]–[7], [11],
[12], and memory intensive computations [13]–[17]. (See [3]
for a recent review of puzzle types; for a review of PoW
schemes applied to blockchain technology, see [18].)

A CPP designed to thwart DoS attacks against a certain
client-server protocol (e.g. TCP, TLS, SMTP, etc.) is layered
independently on top of this protocol or is integrated into it
[6], [19]–[21]. Such a general solution requires a great deal
of standardization.

A web application can also be a target of a DoS attack
which is not based on depletion of system-wide resources,
but leads to exhaustion of application-specific resources such
as file system, memory, processes, threads, CPU, and human
or financial resources. The server usually remains unaffected,
while the application may be affected as a whole, or the attack
may be against individual users such as account lockout.

VOLUME 9, 2021 1



Vladimir Bostanov: Client Puzzle Protocols as Countermeasure against Automated Threats to Web Applications

DoS attacks against web applications have been described
as a subset of the broader category of “threat events to web
applications undertaken using automated actions”. The latter
definition was taken from “OWASP Automated Threat Hand-
book Web Applications” [22]. This handbook provides a list
of 21 automated threat events, including, e.g., brute force
credential cracking, automated account creation, CAPTCHA
defeat, credit card cracking, DoS, etc.. Note that, in the case
of web applications, DoS may be caused by depletion of
human or other resources not related to computer software or
hardware rather than by exhaustion of, e.g., server memory,
CPU power, etc.. For example, a tour operator may accept
online customer requests via a web form. If these requests
are processed by human employees, an attacker could flood
them with fake requests by launching an automated form
submission attack. Thus, the tour operator employees would
be unable to find and process the real customer requests lost
in the large quantity of fake ones. With a little more effort
(by, e.g., using real people’s addresses, etc. in submissions),
the attacker could make it very hard even for site and database
administrators to separate real from fake requests.

To the best of our knowledge, there has been virtually
no academic research on CPPs designed to protect web
applications from automated threat [3]. A possible exception
is represented by a recent US patent proposing a CPP based
on a partial hash inversion puzzle as mitigation against DoS
attacks [23]. However, such a simple scheme cannot provide
an adequate protection, because the time and energy invested
in solving the puzzle can be reduced dramatically by parallel
processing performed with special hardware such as graphics
processing unit (GPU) and field-programmable gate array
(FPGA) clusters [2]. The problem is that a CPP designed
to protect web applications must assume that the puzzle is
solved by a browser script running on a desktop or mobile de-
vice equipped with an ordinary, consumer electronics CPU.
An attacker, however, can use a compiled program (written
in, e.g., the C language) operating commercially available,
not too expensive GPUs or FPGAs to solve the puzzle in a
tiny fraction of the time needed by a browser script using only
the available CPU resources of the average user’s device.

In the the present study, we discuss the utility of CPPs
as a practical layer of protection of web applications against
some automated threat events. We address the parallelization
problem formulated above by defining several requirements
that must be met by such CPPs, and we propose a general
concept and a particular PoW algorithm that fulfills these re-
quirements. The general concept includes recursive definition
of sub-puzzles and partial server-side solution verification.
The proposed PoW algorithm is based on this concept and
on hash inversion/collision tasks. We also introduce a few
prototype implementations of this algorithm in JavaScript,
WebAssembly, Python, and C, and we present the results of
some benchmark tests comparing the performances of these
implementations on different hardware.

It is important to point out, that there is no need of a
single standard CPP supported by all web applications. Un-

like servers and internet protocols, different web applications
may be protected by different CPPs based on different PoW
algorithms. This allows for great diversity and flexibility and
makes the practical implementation much easier than it is for
the underlying protocols, TCP, TLS, and HTTP.

II. GENERAL CONCEPT
A CPP designed to protect web applications against auto-
mated threats should be based on an algorithm that can
be easily implemented in a browser-supported language –
JavaScript or WebAssembly. More specifically, an imple-
mentation in another language like, e.g. C, or Assembly,
must not bring a crucial advantage in terms of computational
speed, because such an advantage can be used by an attacker
to defeat the protection offered by the CPP. For the same
reason, the algorithm should also be nonparalellizable, or
at least, parallelization should not reduce substantially the
average time needed to solve the puzzle [3]. In order to
protect the server from DoS attacks by flooding with wrong
solutions, the CPP asymmetry requirement must be fulfilled:
the time needed for server-side verification should be a tiny
fraction of the time needed by the client to provide a solution
[3]. For the same reason, the amount of data exchanged
between the client and the server should not be too large.

In order to address all these requirements, let us consider a
general concept based on the following two principles. First,
the client must solve a sequence of N easy sub-puzzles Pn,
n = 1 . . .N , instead of a single difficult puzzle. However,
only the initial sub-puzzle P0 in the sequence is posed by the
server. Each of the following problems Pn is generated from
the initial problem P0 and the solution Sn−1 to the previous
one. To be more specific,

P0 : ℘(K, 0) S0, (1a)
Pn : ℘(K, Sn−1) Sn, n = 1 . . .N − 1, (1b)

where ℘ denotes the specific type of problem and K is a set
of parameters provided by the server.

We will further use the word “puzzle” to refer to the whole
sequence of sub-puzzles. After solving the puzzle, the client
sends the solution to the server. The server, however, must
not verify the whole solution. Only one sub-solution needs
to be verified, in order to impose the desired computational
cost on a potential attacker. An attacker who cheats regularly
on k out of the N sub-puzzles will do k/N less work, but
will also fail on average on k/N of the puzzles and will have
to solve the same number of new ones in order to perform
the same attack as someone who does not cheat at all. Thus,
by introducing the sub-puzzle principle, we achieve a client/
server asymmetry quotient of N .

CPPs typically use mathematical problems that can only be
solved by trial and error. The ith trial may involve the compu-
tation of yi = f(K, xi), where f is some function, and xi is
a set of arguments defining the ith trial. A well known simple
example is f(K, xi) = h(K‖i), where h is a hash function,

2 VOLUME 9, 2021



Vladimir Bostanov: Client Puzzle Protocols as Countermeasure against Automated Threats to Web Applications

K is a string provided by the server or composed by the
client according to certain rules, and ‖ denotes concatenation.
The “hashcash” algorithm [5], [7] used in the bitcoin PoW
scheme [1] defines the puzzle solution m by h(K‖m) < H,
whereH is the “target”, a predefined constant.

The second principle of our general concept is somewhat
similar to the first one and it concerns the structure of the sub-
puzzle. Let us consider the following recursive definition,

y0 = y1 = . . . = y`−1 = 0, (2a)

yi = f(K, yi−`, yi−`+1, . . . yi−1), i ≥ `. (2b)

Our sub-puzzle will be defined by some (yet unspecified)
additional requirements imposed on yi. A full verification of
a solution ym would include the replication by the server
of all m ≥ 2` iterations completed by the client. However,
again, this is not necessary when the goal is to thwart auto-
mated attacks against a web application. Instead of perform-
ing full verification, the server may verify only ym and yq ,
where q is randomly chosen amongm−`, m−`+1, . . .m−1.
Such a partial verification allows the attacker to start the
computations from a set of initial values that are different
from those defined by (2a). But as long as the complexity
of the problem does not depend on the choice of a starting
point, this does not reduce the computational cost. It allows,
however, for some parallelization. If a randomly chosen
yq were not verified, the attacker could completely ignore
the recursion and perform an arbitrary number of parallel
computations of y` with randomly chosen y0, y1, . . . y`−1.
But the verification of yq renders futile any cheating strategy
that would avoid the completion of at least ` iterations. This
leaves the attacker with the option to start several parallel
iteration sequences. If the average number of iterations µ
needed to find a solution is large, such parallelization will
effectively speed up the computations. If, however, µ is small
enough, parallelization will not bring any advantage (or will
even increase the computational cost). Thus, if µ is chosen to
be not too large, the partial verification of each sub-solution
will be sufficient, which yields an asymmetry quotient of µ/2
per sub-puzzle.

Note, however, that choosing a small µ reduces both the
computational cost of the puzzle and the asymmetry quotient.
Hence, a large enough number of sub-puzzles N should be
chosen in order to compensate for this effect. The overall
client/server asymmetry quotient A is given by

A =
µN
2
. (3)

Sub-puzzles were first introduced by [6] and [11], how-
ever, without the notion of partial verification.

III. RECURSIVE HASH PUZZLES
Let us consider more closely two types of puzzles: partial
hash inversion and hash collision. Specifying a hash function
and applying the general principles stated above, we formu-
late the two problems as follows. Let HB(K,M) denote the

first B bits of the hash-based message authentication code
(HMAC [24], [25]) of the messageM signed with the keyK,
using, e.g., the SHA-256 hash function [26], [27]. We define
the hash sequence hin for the nth sub-puzzle recursively:

hin = 0, for 0 ≤ i < `, (4a)

hin = HB(Kn, M
i
n), for i ≥ `, (4b)

M i
n = hi−`n ‖hi−`+1

n ‖ . . . hi−1n ‖R, (4c)
K0 = K‖0‖0, (4d)
Kn = K‖n‖Sn−1, for 0 < n < N , (4e)

where K and R are constants provided by the server and Sn

is the solution to the nth sub-puzzle. Then the partial hash
inversion problem is defined by

Sn = hmn < H, m ≥ 2`, H = const, (5)

i.e., a message M composed by a constant string and the
hashes resulting from the last ` iterations should be found
such that its hash is smaller than a predefined constantH (the
target). The hash collision problem is defined by

Sn = hmn = hkn, m > k ≥ 2`, (6)

i.e., two different messages should be found whose hashes
are equal.

Note that both tasks require that at least ` iterations be
performed before even staring to look for a solution. Note
also that the size of the constant string R directly affects the
computational cost of each iteration and, hence, of the whole
puzzle.

Appendix A provides a formal pseudocode description
and a schematic flowchart representation of the proposed
algorithm.

IV. PROBABILITY DISTRIBUTIONS
Now, let us examine the probability distributions governing
the processes of finding solutions to each of the two prob-
lems. In the case of partial hash inversion, at each iteration,
the probability p of hitting the target is

p = (N −H)/N, (7)

where N = 2B is the size of the hash space (e.g. N = 224 if
the first 24 bits of the HMAC function are used). The proba-
bility of not hitting the target inm trials is (1−p)m, and hence
the probability of finding a solution after at least m iterations
is Pm = 1− (1− p)m. Using a continuous approximation to
this distribution with cumulative distribution function (CDF)
P (x) helps us find the mean number of iterations µ needed
for finding a solution and the corresponding standard devia-
tion σ:

VOLUME 9, 2021 3



Vladimir Bostanov: Client Puzzle Protocols as Countermeasure against Automated Threats to Web Applications

P (x) = 1− (1− p)x = 1− eln(1−p)x, (8a)

µ =

∞∫
0

x dP =
−1

ln(1− p)
≈ 1

p
, for p� 1, (8b)

σ =

 ∞∫
0

x2 dP − µ2

1
2

= µ ≈ 1

p
, for p� 1. (8c)

In our second case, the probability of completing m trials
without a collision is [28], [29]:

N !

Nm(N −m)!)
≈ exp

(
−m

2

2N

)
, for m� N. (9)

Using, again, a continuous CDF, we obtain:

P (x) ≈ 1− exp

(
− x2

2N

)
, (10a)

µ =

∞∫
0

x dP =

√
πN

2
, (10b)

σ =

 ∞∫
0

x2 dP − µ2

1
2

=

√
(4− π)N

2
≈ µ

2
. (10c)

Thus, given the same mean, the standard deviation in the
case of partial hash inversion is almost twice as large as the
corresponding standard deviation in the hash collision task.

Note that the initial number of iterations ` completed
before starting to look for a solution should be added to the
corresponding expression for µ in order to obtain the actual
mean number of trials necessary for finding a solution to a
sub-puzzle.

V. SOFTWARE IMPLEMENTATION
In order to test the proposed PoW algorithm, we developed
a prototype JavaScript/PHP implementation of a simple CPP
based on it. A server-side PHP script generates a new puzzle
by setting the type of puzzle ℘ (inversion or collision), the
number of sub-puzzles N , the number of HMAC bits B, the
initial key K (4d), the recursion depth ` (2b, 4c), the size
of the constant string R (4c) determining the computational
cost of each iteration, and (in the case of partial hash inver-
sion) the target H (5). The puzzle is solved by client-side
JavaScript and the PoW is sent back to the server. Another
PHP script performs partial verification as described above
and, in case of success, grants the client an authorization
token providing access to the requested resource.

The PoW size is about 2` 32-bit words, or 8` bytes, for
the partial hash inversion case and about twice as much for
collisions. For ` = 1000 (which is a realistic setting), this
yields about 8 kB and 16 kB, respectively. This size is not too
large for a request sent by a client script in a contemporary
web application. Actually, it is quite reasonable.

The small proof size is achieved by sending the PoW
in two steps, as described in Appendix A. First, only the
solutions Sn to the sub-puzzles are sent to the server. The
size of this part is small: about 4N bytes. Second, the server
chooses a random sub-puzzle and requires the necessary
PoW sequence(s) for the verification of its solution. The size
of this part is 8` bytes for partial hash inversions and 16`
bytes for collisions. (Actually, in the current prototype im-
plementation, the size is approximately 33% larger, because
the PoW is base64-encoded, which, of course, would not be
the case in a real-world implementation.)

In the implementation of the collision problem, a memory-
intensive search is avoided, by using a boolean array whose
indices are the possible hash values (array I in Appendix A).
At each iteration, the program computes a hash and checks
whether the array element with the corresponding index has
a value of True or False, the latter being the initial value.
If True, a solution has been found; else, the value of the
array element is changed to True and the program proceeds
with the next iteration. This procedure is formally described
in Appendix A.

Additionally, benchmark routines comprising loops with
preset, fixed number of iterations performing only the
computationally intensive PoW operations were written in
JavaScript, Python, C, and WebAssembly. The WebAssem-
bly code was obtained from the C source using the Em-
scripten compiler [30]. Benchmark tests measuring mean
hash rates were performed on different platforms.

All source code is available under the GNU General Public
License (GPL) on GitHub [31].

VI. BENCHMARK TEST RESULTS

Some of the test results are presented in Table 1. These were
obtained with number of HMAC bitsB = 24, recursion depth
` = 1000, and HMAC message size (controlled by R in 4c)
about 40 kB (10 000 32-bit words). These values of B and `
prevent taking advantage through parallelization and provide
a reasonable asymmetry quotient (3) as discussed in Section
II. (In the case of partial hash inversion, an appropriate target
H should also be set according to the equations in Section
IV, specifically (7) and (8b).) The chosen message size puts
enough computational load on each iteration to reduce the
number of loop repetitions, thus minimizing the advantage
of a compiled (e.g. C) versus an interpreted (JavaScript)
implementation.

Each mean hash rate presented in Table 1 was obtained
from a sample of 100 trials, each trial comprising 1 000
iterations. In order to simulate recursive algorithm execution,
no parallelization was used, i.e. all iterations were computed
strictly sequentially, and also each new trial was started only
after completion of the previous one. Each hash rate was
obtained by simply dividing 1 000 by the execution time of
the corresponding trial.

4 VOLUME 9, 2021



Vladimir Bostanov: Client Puzzle Protocols as Countermeasure against Automated Threats to Web Applications

CPU/Chipset (OS) Implementation kHash/s SEM
i7-8550U (Ubuntu 18.4) JS, Firefox 3.0 0.03

JS, Chrome 7.0 0.05
WASM, Firefox 4.2 0.03
WASM, Chrome 3.7 0.02
C 7.6 0.03
Python 10.6 0.07

Qualcomm Snapdragon 630 JS, Chrome 3.7 0.08
(Android 9) WASM, Chrome 1.1 0.01

Apple A9 APL0898 JS, Safari 6.8 0.02
(iOS 13.5) WASM, Safari 2.4 0.02

TABLE 1. Mean PoW hash rates on different platforms. SEM = standard error
of the mean, JS = JavaScript, WASM = WebAssembly.

VII. DISCUSSION
We investigated the effectiveness of PoW and CPPs as mit-
igation against automated threats to web applications. We
introduced a general concept including recursive definition
of sub-puzzles and partial server-side solution verification.
The application of this concept provides high client/server
asymmetry and largely reduces the possible advantage gained
by an attacker through parallel processing and/or by using
special hardware. We proposed and investigated a specific
CPP based on partial hash inversion or hash collision and
obtained some benchmark test results demonstrating the via-
bility of the discussed approach.

To the best of our knowledge, the present study is the
first one addressing the possibility of CPP protection against
automated threats to web applications (with the possible
exception of [23]). We also believe that the proposed concept
of recursive definition of sub-puzzles and partial server-side
solution verification is an original contribution introduced for
the first time by this study.

The test results displayed in Table 1 were obtained with a
prototype implementation of the proposed algorithm. These
results show that a substantial increase in computational
speed is achieved by using, e.g. Python versus JavaScript.
This increase is, however, not large enough to render futile
the proposed approach. Even with the advantage of a com-
piled client-side implementation of the CPP, an attacker must
still pay a high price in terms of CPU resources. The same
holds for the advantage gained through the usage of more
powerful CPUs versus, e.g., ARM processors.

We could not compare the results from the benchmark
tests to any relevant results from other studies, because, as
already mentioned, we are not aware of any such studies
addressing the specific problem of implementing CPPs in
browser-supported languages in order to mitigate automated
threats to web applications. The only exception [23] proposes
a simple partial hash inversion puzzle which is easily paral-
lelizable. The result of such parallelization is well known –
a tremendous increase in hash rate to the advantage of an
attacker equipped with the necessary hardware [2].

As already mentioned in the Introduction, different web
applications can be protected by different CPPs. Porting a
certain CPP’s client-side JavaScript code to another language
may increase the computational speed, but only in attacks

against web applications using this particular CPP. To launch
an attack against a web application protected by a different
CPP, the attacker must begin from scratch. This effect may be
amplified by using a multitude of small variations of the PoW
algorithm within the same CPP. To make things even more
difficult for the attacker, the CPP’s client-side JavaScript code
may be heavily obfuscated. Although methods for automated
simplification of obfuscated JavaScript code do exist [32],
an attacker would still have to put considerable amount
of (human-expert) effort into the development of a faster
implementation of the PoW algorithm, which, in the end,
would not be dramatically faster than the original.

A. LIMITATIONS
The proposed approach is not equally fitting for protection
against all threat events listed in the OWASP handbook
[22]. For instance, it seems completely inappropriate for the
mitigation of fingerprinting, footprinting, scraping, or vulner-
ability scanning. In these cases, each and every URL of the
application is included in the attack and a CPP layer would
render the whole application unacceptably slow in response.
Similarly, ad fraud, skewing, cashing out, denial of inventory,
snipping, scalping, expediting, spamming, and CAPTCHA
defeat could hardly be thwarted by CPPs. Such attacks are
based on automation of user actions which are performed
(manually) very often during the normal usage of the targeted
application. Hence, the deployment and activation of a CPP
would result in unacceptably frequent delays.

A CPP could certainly be included as a layer of mit-
igation against credential cracking and credential stuffing
[22]. It would, however, disrupt the user experience. Many
people use their browser’s password manager to store their
credentials for web sites. Username and password are filled
automatically into the login form as soon as it is loaded. With
CPP protection in place, people would have to wait till the
puzzle is solved by the browser, before proceeding further as
authenticated users. Nevertheless, a CPP could still be useful
as an additional layer of defense which is activated by an
intrusion detection system only in case of attack against the
application’s login function.

We see the greatest utility of CPPs in the protection of
larger web forms that take longer to fill. The time needed
by a user to fill the form can simultaneously be used by
the browser to solve the puzzle. Thus, the user’s experience
will not be affected by the protection mechanism. Short
forms containing few but highly sensitive data can also be
protected by CPPs. Such forms are usually submitted only
once by the same user and, although their submission would
take longer, users can be persuaded that this is necessary
for security reasons. Examples of threat events based on
automatic submission of large or sensitive user input are
account creation, carding, credit card cracking, and token
cracking as well as various kinds of DoS [22], including the
scenario described in the Introduction. In such cases, a CPP
could even be employed as the first line of defense against
automated attacks.

VOLUME 9, 2021 5



Vladimir Bostanov: Client Puzzle Protocols as Countermeasure against Automated Threats to Web Applications

VIII. CONCLUSION
CPPs based on recursive sub-puzzles and partial server-
side verification can provide an effective layer of mitigation
against various automated threats to web applications. Future
research may focus on other PoW schemes that could possi-
bly reduce further the advantage of an attacker using special
hardware to solve the puzzle..

APPENDIX A PSEUDOCODE AND FLOWCHART
The following pseudocode represents the client-side algo-
rithm used to solve the puzzle. The required input parameters
are provided by the server.
Require: N > 10 {Number of sub-puzzles}
Require: C = True/False {Puzzle type (True for collision)}
Require: 16 < B ≤ 32 {Number of bits}
Require: ` > 100 {Recursion depth}
Require: 0 ≤ K < 1648 {Initial key}
Require: R > 0 {Padding increasing message size}
Require: 2B−1 < H < 2B {Target for partial inversion}
B ← 2B−1

K0 ← K‖0‖0
for n = 0 to N − 1 do
h0 ← 0, h1 ← 0, . . . h`−1 ← 0
if C then {Puzzle type is collision}
I0 ← False, I1 ← False, . . . IB ← False

end if
X ← False, i← `− 1
while not X do
i← i+ 1
M i ← hi−`‖hi−`+1‖ . . . hi−1 ‖R
hi ← HB(Kn, M

i)
if i ≥ 2` then

if C then {Puzzle type is collision}
X ← Ih

i

Ih
i ← True

else {Puzzle type is inversion}
X ← (hi < H)

end if
end if

end while
Sn ← hi {Sub-puzzle solution}
hn ← (hi−2`, hi−2`+1, . . . hi−1) {PoW sequence}
if C then {Puzzle type is collision}
j ← IndexOf(hj | 2` ≤ j < i, hj = hi)
gn ← (hj−2`, hj−2`+1, . . . hj−1) {2nd PoW seq.}

else {Puzzle type is inversion}
gn ← Null

end if
Kn+1 ← K‖(n+ 1)‖Sn

end for
S← (S0, S1, . . . SN−1) {Puzzle solution}
return S,h0,h1, . . .hN−1,g0,g1, . . .gN−1

The following pseudocode represents the server-side algo-
rithm used for partial verification of the puzzle solution and
the PoW sequences provided by the client.

Require: S
(S0, S1, . . . SN−1)← S
n← Random(0 ≤ n < N )
Kn ← K‖n‖Sn−1

Require: hn,gn

(h0n, h
1
n, . . . h

2`−1
n )← hn

Mh ← h`‖h`+1‖ . . . h2`−1 ‖R
i← Random(` ≤ i < 2`)
M i ← hi−`‖hi−`+1‖ . . . hi−1 ‖R
if Sn 6= HB(Kn, Mh) then

return False
else if hi 6= HB(Kn, M

i) then
return False

else if C then {Puzzle type is collision}
(g0n, g

1
n, . . . g

2`−1
n )← gn

Mg ← g`‖g`+1‖ . . . g2`−1 ‖R
j ← Random(` ≤ j < 2`)
M j ← gj−`‖gj−`+1‖ . . . gj−1 ‖R
if Sn 6= HB(Kn, Mg) then

return False
else if hj 6= HB(Kn, M

j) then
return False

else
return True

end if
else {Puzzle type is inversion}

if Sn ≥ H then
return False

else
return True

end if
end if
The flowchart displayed in Figure 1 provides a schematic

representation of the whole CPP.

Client Puzzle Protocol (CPP)

CLIENT SERVER

Request authorization
to access a resource

- Generate input parameters
for a new recursive puzzle

Send the parameters to the client�
Solve the puzzle

Send all sub-puzzle
solutions to the server

- Randomly choose a sub-puzzle

Require recursive proof-of-work
(PoW) sequence(s) for its solution�Provide the required

PoW sequence(s) for
the chosen sub-puzzle - Verify the sub-puzzle solution

Randomly chose iteration(s) from
the provided PoW sequence(s)

Verify the chosen iteration(s)

If all correct, grant an auth. token�Request the resource
providing the granted
authorization token - Validate the authorization token

If the authorization token is valid,
provide the requested resource�Receive the resource

FIGURE 1. Schematic CPP representation.

6 VOLUME 9, 2021



Vladimir Bostanov: Client Puzzle Protocols as Countermeasure against Automated Threats to Web Applications

ACKNOWLEDGMENT
This study was supported by the Research & Development
Fund of SySS GmbH. The author is grateful to Colin Wat-
son of OWASP and to Alex Biryukov of the University of
Luxembourg for the valuable discussions.

REFERENCES
[1] S. Nakamoto. (2008) Bitcoin: A peer-to-peer electronic cash system.

[Online]. Available: https://bitcoin.org/bitcoin.pdf
[2] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder, Bitcoin

and cryptocurrency technologies: A comprehensive introduction. Prince-
ton University Press, 2016.

[3] I. M. Ali, M. Caprolu, and R. D. Pietro, “Foundations, properties, and
security applications of puzzles: A survey,” ACM Computing Surveys
(CSUR), vol. 53, no. 4, pp. 1–38, 2020.

[4] C. Dwork and M. Naor, “Pricing via processing or combatting junk mail,”
in Annual International Cryptology Conference. Berlin: Springer, 1992,
pp. 139–147.

[5] A. Back. (1997) Hashcash. [Online]. Available:
http://www.hashcash.org/papers/announce.txt

[6] A. Juels and J. Brainard, “Client Puzzles: A Cryptographic Countermea-
sure Against Connection Depletion Attacks,” in Proceedings of NDSS
’99 (Networks and Distributed Security Systems), S. Kent, Ed., 1999, pp.
151—-165.

[7] A. Back. (2002) Hashcash – a denial of service counter-measure. [Online].
Available: http://www.hashcash.org/papers/hashcash.pdf

[8] Y. I. Jerschow and M. Mauve, “Non-parallelizable and non-interactive
client puzzles from modular square roots,” in 2011 Sixth International
Conference on Availability, Reliability and Security. IEEE, 2011, pp.
135–142.

[9] ——, “Modular square root puzzles: Design of non-parallelizable and
non-interactive client puzzles,” Computers & Security, vol. 35, pp. 25–36,
2013.

[10] D. Stebila, L. Kuppusamy, J. Rangasamy, C. Boyd, and J. G. Nieto,
“Stronger difficulty notions for client puzzles and denial-of-service-
resistant protocols,” in Cryptographers’ Track at the RSA Conference.
Berlin: Springer, 2011, pp. 284–301.

[11] A. Juels and J. Brainard, “Cryptographic Measures against Connection
Depletion Attacks,” Patent US 7,197,639 B1, Mar. 27, 2007.

[12] T. Aura, P. Nikander, and J. Leiwo, “DOS-resistant authentication with
client puzzles,” in International workshop on security protocols. Berlin:
Springer, 2000, pp. 170–177.

[13] C. Dwork, A. Goldberg, and M. Naor, “On memory-bound functions for
fighting spam,” in Annual International Cryptology Conference. Berlin:
Springer, 2003, pp. 426–444.

[14] M. Abadi, M. Burrows, M. Manasse, and T. Wobber, “Moderately hard,
memory-bound functions,” ACM Transactions on Internet Technology
(TOIT), vol. 5, no. 2, pp. 299–327, 2005.

[15] F. Coelho, “Exponential memory-bound functions for proof of work
protocols.” IACR Cryptol. ePrint Arch., vol. 2005, p. 356, 2005.

[16] A. Biryukov and D. Khovratovich, “Egalitarian com-
puting,” in Proceedings of the 25th USENIX Secu-
rity Symposium, 2016, pp. 315–326. [Online]. Available:
https://www.usenix.org/sites/default/files/sec16_full_proceedings.pdf

[17] ——, “Equihash: Asymmetric proof-of-work based on the generalized
birthday problem,” Ledger, vol. 2, pp. 1–30, 2017. [Online]. Available:
https://doi.org/10.5195/ledger.2017.48

[18] A. Meneghetti, M. Sala, and D. Taufer, “A survey on PoW-based con-
sensus,” Annals of Emerging Technologies in Computing (AETiC), Print
ISSN, pp. 2516–0281, 2020.

[19] D. Dean and A. Stubblefield, “Using client puzzles to
protect TLS,” in 10th USENIX Security Symposium (USENIX
Security 01). Washington, D.C.: USENIX Association, 2001.
[Online]. Available: https://www.usenix.org/conference/10th-usenix-
security-symposium/using-client-puzzles-protect-tls

[20] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson, Host Identity
Protocol, Request for Comments (RFC) 5201. Internet Engineering Task
Force, 2008. [Online]. Available: https://tools.ietf.org/html/rfc5201

[21] X. Wang and M. K. Reiter, “Mitigating bandwidth-exhaustion attacks
using congestion puzzles,” in Proceedings of the 11th ACM conference
on Computer and communications security, 2004, pp. 257–267.

[22] C. Watson and T. Zaw. (2018) OWASP Automated Threat Handbook Web
Applications. OWASP. [Online]. Available: https://owasp.org/www-pdf-
archive/Automated-threat-handbook.pdf

[23] D. Shiell, A. R. Khakpour, R. J. Peters, and D. Andrews, “Unobtrusive and
Dynamic DDoS Mitigation,” Patent US 10,567,427 B2, Feb. 18, 2020.

[24] H. Krawczyk, M. Bellare, and R. Canetti, HMAC: Keyed-
Hashing for Message Authentication, Request for Comments (RFC)
2104. Internet Engineering Task Force, 1997. [Online]. Available:
https://tools.ietf.org/html/rfc2104

[25] National Institute of Standards and Technology (NIST), The Keyed-Hash
Message Authentication Code (HMAC). Federal Information Processing
Standards Publication 198-1 (FIPS PUB 198-1), 2008. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.198-1.pdf

[26] D. Eastlake and T. Hansen, US Secure Hash Algorithms, Request
for Comments (RFC) 6234. Internet Engineering Task Force, 2011.
[Online]. Available: https://tools.ietf.org/html/rfc6234

[27] National Institute of Standards and Technology (NIST), Secure
Hash Standard (SHS). Federal Information Processing Standards
Publication 180-4 (FIPS PUB 180-4), 2015. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

[28] C. Paar and J. Pelzl, Understanding cryptography: A textbook for students
and practitioners, 2nd ed. Berlin: Springer, 2010.

[29] S. Nigel P, Cryptography Made Simple. Cham: Springer, 2016.
[30] Emscripten. [Online]. Available: https://emscripten.org/
[31] V. Bostanov. (2021) CPP4WebApp: A Demonstration Software

Implementation of Client Puzzle Protocols as Countermeasure
against Automated Threats to Web Applications. [Online]. Available:
https://github.com/vladimir-bostanov/CPP4WebApp

[32] G. Lu and S. Debray, “Automatic simplification of obfuscated JavaScript
code: A semantics-based approach,” in 2012 IEEE Sixth International
Conference on Software Security and Reliability. IEEE, 2012, pp. 31–40.

VLADIMIR BOSTANOV was born in Sofia, Bul-
garia in 1969. He received a diploma in physics
in 1996 from the Sofia University St. Kliment
Ohridski and then worked til 1999 as a researcher
in theoretical solid state physics at the Bulgarian
Academy of Sciences in Sofia, the Fritz Haber
Institute of the Max Planck Society in Berlin, and
the University of Augsburg, Germany. He obtained
a doctoral degree in psychology in 2004 from the
Eberhard Karl University of Tübingen, Germany,

where he spent more than 17 years as a neuroscientist. His work was
focused on the development and implementation of novel mathematical and
statistical methods for analysis and quantitative assessment of event-related
brain potentials (ERP). He was a winner on two of the provided datasets
at the International Brain-Computer Interface (BCI) Competition 2003.
Currently, Dr. Bostanov works as an IT security consultant for SySS GmbH
in Tübingen, Germany. The focus of his research is on web application
security.

VOLUME 9, 2021 7


