Adrian Vollmer

Better Passwords Project

The State of Active Directory Passwords

Who am I?

C:\> whoami /all USER INFORMATION		
Full Name:	Adrian Vollmer	
Organisation:	SySS GmbH	
Occupation:	Penetration Tester	
Focus:	Active Directory	
Account created:	Jan 2015	
Social:	github.com/AdrianVollmer;	@mr_mitm

- → Web services have different threat models than Active Directory
- → Clear up misinformation about passwords
- → Tool release
- → Finding weak points in AD networks
- → New insight on security-related topics in an AD network

When are password-guessing attacks relevant? (in Active Directory)

- → Online password guessing
- → Kerberoast
- → NTLM authentication
- → Domain cached credentials (DCC)
- → NT hashes?

Online password guessing

→ Tools:

- → Metasploit's smb_login
- → kerbrute
- → ...
- → Typical frequency:
 - \rightarrow 10/s (without lockout threshold)
 - \rightarrow 5/h (with lockout threshold)
- \rightarrow Unauthenticated \rightarrow domain user

\rightarrow Domain user \rightarrow domain user

- → Potential "quick win"

Crack Kerberos tickets

→ Tools:

Kerhernast

- → Impacket's GetUserSPNs.pv
- → PowerSploit's Invoke-Kerberoast

 \rightarrow Typical frequency: $10^9/s$ (etype23)

SVC_SAP2014\$ACME.CORP\$acme.copr/SVC_SAP2014\$

NTLM authentication

- → Widespread in Windows networks: used in SMB, LDAP, RDP, HTTP, ...
- → Tools:
 - → responder
 - → wireshark
 - → seth
 - → .
- \rightarrow Typical frequency: $10^8/s$
- ightarrow Unauth. ightarrow local user / domain user

Domain cached credentials

- → Provide offline logon functionality
- → Stored in HKLM:/SECURITY
- → Tools:
 - → Impacket's secretsdump
 - ➔ pypykatz
 - → Metasploit's

post/windows/gather/cachedump

- \rightarrow Typical frequency: $10^6/s$ (DCC2)
- ightarrow Local admin ightarrow domain user

4c002407d59bd4a5284047eaea5f562d836009c336e3ba8f673ec5da850ddd4f092da4cc10bc38b9
ACME.CORP/Administrator:\$DCC2\$10240#Administrator#7ae7336634962e87d50230bfc8b925ab

SySS GmbH

imbH

- → How Windows and AD store passwords
- → Stored in HKLM:/SAM or ntds.dit
- → Cracking is usually not necessary! Simply pass the hash.
- → Tools:

NT hash

- → Impacket's secretsdump
- ➔ pypykatz
- → ... → Typical frequency: 10^{11} /s
- → Domain admin $\xrightarrow{?}$ domain user; local admin $\xrightarrow{?}$ local user

Overview

Scenario	Freq [1/s] *	Escalation
Online	10	Unauthenticated $ ightarrow$ domain user
DCC	10^{6}	Local admin $ ightarrow$ domain user
NTLM	10^{8}	Unauthenticated $ ightarrow$ domain user
Kerberoast	10^{9}	Domain user $ ightarrow$ domain user
NT	10^{11}	(Domain/local) admin $\xrightarrow{?}$ (domain/local) user
LM	10^{11}	(Domain/local) admin $\stackrel{?}{ ightarrow}$ (domain/local) user

* on an i7-6800K@3.40GHz, 64GB RAM, twelve cores, four GeForce RTX 2080

- → Customers love being rated
- → Can it be done objectively?
- → Choose a fixed wordlist
- → Choose a fixed ruleset
- → Build a corpus of non-identifying results

- 1. Become domain admin
- 2. Retrieve hashes (e.g. with secretsdump)
- 3. hashcathelper ntlm dc01.ntds
- 4. hashcathelper analytics -H dc01.ntds -A dc01.ntds.out
 - -f json -o report.json
- 5. hashcathelper db submit report.json
- 6. hashcathelper db stats

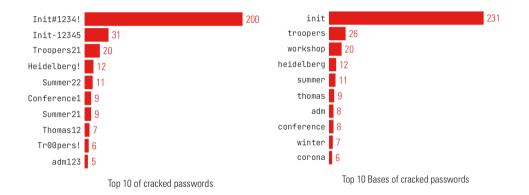
Hint: Use secretsdump with -user-status

Remove deactivated accounts and computer accounts and determine:

- 1. Cracked passwords
- 2. User equals password
- 3. Non-empty LM hashes
- 4. Accounts with non-unique passwords
- 5. Accounts with blank passwords
- 6. Password clusters
- 7. Top 10 passwords, top 10 basewords

Store statistical information in database

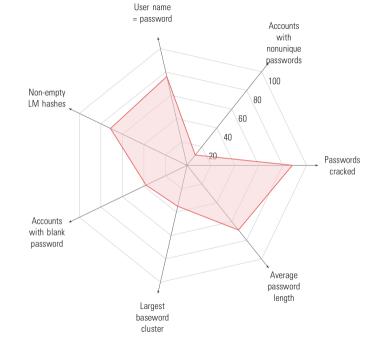
Hashcathelper: key results



Total accounts 4360 Removed 1861 Accounts considered Passwords cracked User name = password Non-empty LM hashes Accounts with nonunique passwords Accounts with blank password Average password length Median password length Average number of character classes

2499 892 (35.69%) 0 (0,0%) 0 (0.0%)912 (36,49%) 0 (0.0%)9.84 10.0 3.37

Hashcathelper: top 10



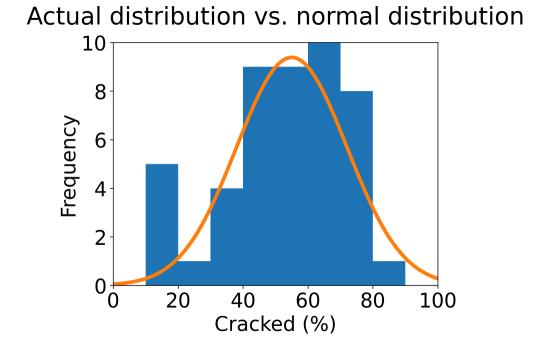
Hashcathelper: statistics

	Value	Mean	Std. Dev.	Percentile
Passwords cracked (%)	35.69	54.92	16.59	88
Accounts with nonunique passwords (%)	36.49	23.8	12.85	11
User name = password (%)	0.0	2.16	7.07	76
Non-empty LM hashes (%)	0.0	7.69	13.82	71
Accounts with blank password (%)	0.0	2.53	9.14	38
Largest baseword cluster (%)	10.24	9.81	8.91	35
Average password length	9.84	9.42	1.11	69

Our dictionary attack

- → Wordlist: Crackstation¹ + Hashes.org (2 316 703 347 unique entries; 26 GB)
 - → Contains Wikipedia (all languages), Project Gutenberg, password breaches, other wordlists, dictionaries, ...
- → Rule set: OneRule²
- → 120 460 563 559 138 candidates
- → Takes around seven hours on our rig
- $\rightarrow \mathcal{O}(1)$, not $\mathcal{O}(n)$

¹https://crackstation.net/crackstation-wordlist-password-cracking-dictionary.htm ²https://notsosecure.com/one-rule-to-rule-them-all



Average percentage of cracked accounts

$55 \pm 1'$	7%
-------------	----

Based on 167 135 accounts from 44 organizations

- → Find passwords in "Have I Been Pwnd?" database
- → Use Cypher queries as filters
- → Add Bloodhound edges of type SamePassword

Common countermeasures

- → Minimum length and complexity
 - → Passw0rd123! is long, complex and weak
- → Password filters
 - → Banned words
 - → Check with HIBP
 - → Only proactive
 - → May disallow perfectly fine passwords
 - → Does not find password reuse
 - → Doesn't even have 120 trillion entries

- → Forget about Greg and Janet in accounting; just use a blocklist, MFA and lockout thresholds for low priv accounts
- → Focus on administrative accounts and service accounts. Generated passwords. No excuses!
- → Don't forget about password reuse between tiered accounts
- → If you can, run secretsdump+hashcathelper yourself

- → Forget about Greg and Janet in accounting; just use a blocklist, MFA and lockout thresholds for low priv accounts
- → Focus on administrative accounts and service accounts. Generated passwords. No excuses!
- → Don't forget about password reuse between tiered accounts
- → If you can, run secretsdump+hashcathelper yourself

Don't use Windows and Active Directory, I guess?

Download Hashcathelper

https://github.com/SySS-Research/hashcathelper

THE PENTEST EXPERTS

WWW.SYSS.DE